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INTRODUCTION

Picat [1]  is  a  new  programming  language  created  by 
Neng-Fa Zhou and Jonathan  Fruhman.  The specification 
was published in December 2012. The first official (beta) 
release was in May 2013. 

The main  reason I started to try out Picat  in  May 2013 
was that it has support for Constraint Programming (CP), 
which  is  a  programming  paradigm  that  I  am  very 
interested  in.  Right  from  the  beginning  I  liked  this 
language – and not just for the support  for CP - and in  
this paper I hope to show why. I should also say that the 
examples  shown  here  are  not  just  for  Constraint  
Programming,  but  also  traditional  backtracking  (à  la 
Prolog),  tabling  (memoization),  imperative  constructs, 
etc, i.e. what makes Picat Picat. 

The name  Picat is  an  acronym and  is explained  in  the 
quote below, borrowed from the Picat site [1]: 

Picat is a general-purpose language that 
incorporates features from logic programming, 
functional programming, and scripting languages.  
The letters in the name summarize Picat's 
features: 

• Pattern-matching [...]
• Imperative [...]
• Constraints [...]
• Actors [...]
• Tabling [...]

Of these general features, I have mostly tested constraints, 
pattern-matching, imperative programming constructs, 
and tabling, but have not played much with actors directly 
and will not mention them here. 

Let us start with some simple examples to show these 
features. 



All the programs and models in this paper – and many 
more - are available at my My Picat Page [2] 
(http://www.hakank.org/picat/). 

1 CONSTRAINTS

Here is an example for the inevitable SEND + MORE = 
MONEY problem (send_more_money.pi),  which  clearly 
shows the influences of Prolog: 

import cp.

sendmore(Digits) =>
   Digits = [S,E,N,D,M,O,R,Y],
   Digits :: 0..9,

   all_different(Digits),
   S #> 0,
   M #> 0,
          1000*S + 100*E + 10*N + D
   +      1000*M + 100*O + 10*R + E
   #= 10000*M + 1000*O + 100*N + 10*E + Y,
        
   solve(Digits).

Except for the => operator, it looks very much like Prolog 
using Constraint Logic Programming (CLP). I explain the 
=> and how it is different from Prolog's :- later on, and 
will also mention some other similarities/differences 
from/with Prolog. 

Another mandatory example when describing Constraint 
Programming is Sudoku (sudoku.pi) where we now see 
more differences between traditional Prolog and Picat in 
the use of  the foreach loop: 
import cp.
import util.

go =>
   time2(sudoku(1)).

sudoku(ProblemName) =>
        problem(ProblemName, Board),
        print_board(Board),
        sudoku(3, Board),
        print_board(Board).

sudoku(N, Board) =>
   N2 = N*N,

   Vars = array_matrix_to_list(Board),
   Vars :: 1..N2,

   foreach(Row in Board) all_different(Row) end,
   foreach(Column in transpose(Board))
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        all_different(Column) end.
   foreach(I in 1..N..N2, J in 1..N..N2)
      all_different([Board[I+K,J+L] : K in 0..N-1, L in 0..N-1])
   end,

   solve([ff,down], Vars).

print_board(Board) =>
   N = Board.length,
   foreach(I in 1..N)
      foreach(J in 1..N)
         X = Board[I,J],
         if var(X) then printf("  _") else printf("  %w", X) end
      end,
      nl
   end,
   nl.

problem(1, Data) => 
Data = [
    [_, _, 2, _, _, 5, _, 7, 9],
    [1, _, 5, _, _, 3, _, _, _],
    [_, _, _, _, _, _, 6, _, _],
    [_, 1, _, 4, _, _, 9, _, _],
    [_, 9, _, _, _, _, _, 8, _],
    [_, _, 4, _, _, 9, _, 1, _],
    [_, _, 9, _, _, _, _, _, _],
    [_, _, _, 1, _, _, 3, _, 6],
    [6, 8, _, 3, _, _, 4, _, _]].

What I have understood from [3], the loop construct was 
one of the reasons that Neng-Fa Zhou wanted to create a 
new language, since he was not satisfied with the foreach 
loop he implemented in B-Prolog [4]. (Many of my Picat 
models/programs are directly ported from the B-Prolog 
models I wrote in 2013. See my B-Prolog page [5], e.g. 
sudoku.pl.) 

One thing that differs between Picat's foreach loop 
compared to B-Prolog's (as well as ECLiPSe's and 
SICStus Prolog's) is that the user does not have to 
explicitly declare local (or global) variables, which makes 
it simpler to use and read. 

I will describe more CP in Picat below, but will first 
describe some other Picat features.

2 TABLING

“Tabling”  here  refers  to  memoization ("caching  the 
results", see [6]). A simple example of tabling is to start  
with this the standard recursive definition of a Fibonacci 
number: 

table
fibt(0)=1.
fibt(1)=1.
fibt(N)=F,N>1 => F=fibt(N-1)+fibt(N-2).

This is normally very slow for larger N because of the 
massive number of recursive steps needed. Using the table 
declaration before the predicate will automatically have 
all the calls and their answers cached. Subsequent calls 
are resolved by table lookups, which can speed up the 
program considerably.

Another example of its use is in euler2.pi (Project Euler 
problem #2), where the object is to find the sum of all 
even-valued terms in the sequence that do not exceed four 
million. Here is one way of implementing this, using list 
comprehension:
euler2 => 
   writeln(sum([F : N in 1..100, F = fibt(N), F < 4000000, F mod 
2 =:= 0])).

Finding this sum takes 0.015s (with the overload of 
starting Picat etc). If we do not table the values then it is 
much (much!) slower: fibt(100) is 
573147844013817084101 (~5.73e+20), which requires an 
exponential number of recursive steps to compute. Also, 
here we see that Picat supports big integers as well. 

Please note that tabling in some cases might be slower 
because of the memory overhead involved, so one has to 
be careful and test both with and without tabling.

Another example of tabling is for dynamic 
programming. Here is an example for calculating the 
edit distance, which is taken from Picat's example exs.pi: 

% computing the minimal editing distance
% of two given lists
table(+,+,min)
edit([],[],D) => D=0.
edit([X|Xs],[X|Ys],D) =>  % copy
    edit(Xs,Ys,D).
edit(Xs,[_Y|Ys],D)   ?=>  % insert
    edit(Xs,Ys,D1),
    D=D1+1.
edit([_X|Xs],Ys,D) =>     % delete
    edit(Xs,Ys,D1),
    D=D1+1.

(The symbols => and ?=> will be explained later.)

3 IMPERATIVE PROGRAMMING

Regarding loops (which can be seen as a trademark in 
imperative programming), we have already seen the 
foreach loop in the Sudoku example. Picat has some 
more of the traditional imperative programming 
constructs: while loops and assignments.  

The Fibonacci example shown above (Project Euler #2, 
using the list comprehension) has the drawback of a hard 
coded limit that checks all N in the range 1..100 (it might 
be considered cheating to use a fixed range); this range 
was found by some experimentation and is actually not 
the smallest range. In Picat it is also possible to use a 
while loop for this, though not as nice looking as the list 
comprehension version. This is traditional imperative 
programming. It also shows an example of  
(re)assignments using the := operator: 
euler2b => 
  I = 1,
  Sum = I,
  F = fibt(I),
  while (F < 4000000) 
     if F mod 2 == 0 then
        Sum := Sum + F
     end,
     I := I + 1,
     F := fibt(I)
  end,
  writeln(Sum).

This version also calculates the solution in 0.015s.

Sometimes the use of list comprehension and while loops 
might be slower than writing a predicate in traditional 
recursive (“Prolog”) style, and it is sometimes worthwhile 
to try this approach as well.



4 MORE CONSTRAINT PROGRAMMING

Here are some more examples of using CP in Picat. 

6.1  Element Constraint

In Picat, as in B-Prolog (and in many other CP systems), 
the element constraint (List[Ith]=Value) has to be 
written explicitly using the predicate 
    element(Ith, List, Value) 

when Ith is a decision variable. However, if Ith is a pain 
integer, it can in Picat be stated more naturally as
     List[Ith] = Value 

or 

  List[Ith] #= Value 

if  List is a list of decision variables. 

Readers of my My Constraint Programming Blog [7]  
might remember that I quite often complain how hard it is 
to write a matrix element constraint in different CP 
systems, and this applies to Picat as well. For example, in 
circuit.pi, in order to implement the circuit constraint I 
would like to use this matrix element construct to 
naturally state the constraint, but this is not allowed: 
foreach(I in 2..N)
  % this is not allowed
  Z[I] = X[Z[I-1]]
end

Instead, I have to rewrite it. Here is one version: 
import cp. 

% ...

foreach(I in 2..N)
   Z1 #= Z[I-1],
   element(Z1,X,X2),
   Z[I] #= X2
end,

In stable_marriage.pi a more general version, 
matrix_element, is used: 
matrix_element(X, I, J, Val) =>
  element(I, X, Row),
  element(J, Row, Val).

This version (using two element) can be very good 
sometimes, but depending on the type of the variables the 
above constraint does not work correctly; instead some of 
following variants have to be used. Sometimes all variants 
have to be tested. Note: all of them except one are 
commented out: 
import cp.

% ...

matrix_element(X, I, J, Val) =>
  element(I, X, Row),
  element(J, Row, Val).

% matrix_element(X, I, J, Val) =>
%   nth(I, X, Row),
%   element(J, Row, Val).

% matrix_element(X, I, J, Val) =>
%   freeze(I, (nth(I, X, Row),freeze(J,nth(J,Row,Val)))).

% matrix_element(X, I, J, Val) =>
%   freeze(I, (element(I, X, Row),freeze(J,element(J,Row,Val)))).

The built-in freeze(X, Call) predicate delays the call to 
Call until X becomes a non-variable term. 

6.2 Reification, alldifferent_except_0

Picat supports reifications with a nice syntax I expect 
from a high level CP system. Note that  #/\ is "and" for 
FD variables (“or” is denoted #\/). Here is the 
alldifferent_except_0 constraint (see 
alldifferent_except_0.pi for the full model): 
import cp.

alldifferent_except_0(Xs) =>
  foreach(I in 1..Xs.length, J in 1..I-1)
    (Xs[I] #!= 0 #/\ Xs[J] #!= 0) #=> (Xs[I] #!= Xs[J])
  end.

6.3 N-queens

Below are some different implementations of N-queens, 
taken from nqueens.pi. 
import cp.

queens3(N, Q) =>
   Q=new_list(N),
   Q :: 1..N,
   all_different(Q),
   all_different([$Q[I]-I : I in 1..N]),
   all_different([$Q[I]+I : I in 1..N]),
   solve([ff],Q).

% Using all_distinct instead
queens3b(N, Q) =>
    Q=new_list(N),
    Q :: 1..N,
    all_distinct(Q),
    all_distinct([$Q[I]-I : I in 1..N]),
    all_distinct([$Q[I]+I : I in 1..N]),
    solve([ff],Q).

queens4(N, Q) =>
   Q = new_list(N),
   Q :: 1..N,
   foreach(A in [-1,0,1])
      all_different([$Q[I]+I*A : I in 1..N])
   end,
   solve([ff],Q).

Note that in queens3 we have to use $Q[I]-I (i.e. Q[I] 
prepended with a $) since it is a term, not a function call, 
and must be evaluated ("escaped"). 

6.4 Magic Square

Below is a magic squares implementation in Picat, taken 
from magic_square.pi. One thing to notice is the use of 
rows(), columns(), diagonal1(), and diagonal2(), from 
Picat's util module. 
import cp.
import utils.

magic2(N,Square) =>
   writef("\n\nN: %d\n", N),
   NN = N*N,
   Sum = N*(NN+1)//2,% magical sum
   writef("Sum = %d\n", Sum),

   Square = new_array(N,N),
   Square :: 1..NN,

  all_different(Square),

  foreach(Row in Square.rows()) Sum #= sum(Rows) end,
   foreach(Column in Square.columns()) Sum #= sum(Column) end,

   % diagonal sums
   Sum #= sum(Square.diagonal1()),
   Sum #= sum(Square.diagonal2()),

   % Symmetry breaking
   Square[1,1] #< Square[1,N],
   Square[1,1] #< Square[N,N],
   Square[1,1] #< Square[N,1],
   Square[1,N] #< Square[N,1],



   solve([ffd,updown],Square),

   print_square(Square).

6.5 Magic Sequence

Another standard CP problem is magic_sequence.pi: 
import cp.

magic_sequence(N, Sequence) =>
   writef("\n%d: ",N),
   Sequence = new_list(N),
   Sequence :: 0..N-1,
   foreach(I in 0..N-1) count(I,Sequence,#=,Sequence[I+1]) end,
   N #= sum(Sequence),
   Integers = [ I : I in 0..N-1],
   N = scalar_product(Integers, Sequence),
   solve([ff], Sequence).

scalar_product(A, X) = Product => 
   Product #= sum([S : I in 1..A.length, S #= A[I]*X[I]]).

Note that I tend to use count(Var, Vars, Relation, N) 
instead of the built-in global_cardinality(List, 
Pairs) since it is more natural for me. 

6.6 Least Diff problem, optimization

The Least Diff problem is a simple optimization problem 
in Picat: Minimize the difference between ABCDE-FGHIJ 
where the letters A..J are distinct integers (in the domain 
0..9). 
import cp.

least_diff(L,Diff) =>
  L = [A,B,C,D,E,  F,G,H,I,J],
  L :: 0..9,

  all_different(L),

  X #= 10000*A + 1000*B + 100*C + 10*D + E,
  Y #= 10000*F + 1000*G + 100*H + 10*I + J,

  Diff #= X - Y,
  Diff #> 0,
  solve([$min(Diff)], L).

The interesting part is the objective $min(Diff) (note the 
"$") which defines the objective value. 

For more advanced models one can use the 
$report(Goal) to show the progress of the objective. 
Here is an example from einav_puzzle.pi: 
   solve($[min(TotalSum), report(printf("Found %d\n", 
TotalSum)), ffd],Vars),

Without report(Goal) the solution is only shown after 
the solver has finished the search, which may take a 
considerable amount time.

6.7 Table constraint

Picat has a table global constraint: the in_table built-in. 
Here is a simple example using table constraint: 
traffic_lights.pi (CSPLib #16) which use the list Allowed 
to state which combinations are allowed. 
import cp.

traffic_lights_table(V, P) =>
  N  = 4,
  % allowed/1 as a table (translated)
  Allowed = [(1,1,3,3),
               (2,1,4,1),
               (3,3,1,1),
               (4,1,2,1)],
   

   V = new_list(N), V :: 1..N,
   P = new_list(N), P :: 1..N,
   foreach(I in 1..N, J in 1..N)
      JJ = (1+I) mod N,
      if J #= JJ then
         VI = V[I], PI = P[I],
         VJ = V[J], PJ = P[J],
         % Table constraint
         (VI, PI, VJ, PJ) in Allowed
      end
   end,
   Vars = V ++ P,
   solve(Vars).

The use of in_table requires that the values are integers 
so we have to translate to/from integers in this version. 

Another example of table constraint is hidato.pi (though it 
is not very efficient). 

6.8 Global Constraints

Picat supports the most common global constraints as 
shown in the list below. See Picat Guide [8], section 11.5 
for details. 

• all_different(List) 

• all_distinct(List) 

• assignment(List) (a.k.a. inverse) 

• circuit(List) 

• count(Value,List,Rel,N) 

• cumulative(Starts,Durations,Resources, 
Limit) 

• diffn(RectangleList) 

• disjunctive_tasks(Tasks) 

• element(I,List, V) 

• global_cardinality(List, Pairs) (I tend to not 
use this so much since it is not as natural as using count/4) 

• neqs(NegList) 

• serialized(Starts,Durations) 

• subcircuit(List) 
• in_table used as the global constraint table (not to be 

confused with tabling). 

In the module cp_utils.pi, I have also defined some other 
useful decompositions of global constraints: 

• matrix_element (some different versions) 

• to_num 

• latin_square 

• increasing 

• decreasing 

• scalar_product (with a relation) 

• alldifferent_except_0 

• nvalue 

• nvalues 

• global_cardinality(Array, GccList) 
• lex2, lex2eq, lex_less, lex_lesseq, 

lex_greater, lex_greatereq, lex_less2 
(alternative variant) 

6.9 Labeling

Most of the standard variable and value heuristics are 
supported, though I do miss options for using random 
assignments. Some of the examples above show how to 
label the variables in the solve predicate. Here the ff is 



first-fail variable labeling, and down means that a variable 
is labeled from the largest value to the smallest. 
     solve([ff,down], Vars)

See the Picat Guide for descriptions of the options to 
solve and other solver options. 

5 PATTERN MATCHING

Pattern matching is Picat is more influenced by pattern 
matching in functional programming than by Prolog's 
unification. This may confuse some programmers with a 
Prolog background. 

Here is a definition of quick sort which shows some of 
the pattern matching constructs in Picat. It also shows 
how to define functions, i.e. predicates with one return 
value (the return value is placed after the predicate name, 
e.g. =  L):

qsort([])     = L => L = [].
qsort([H|T]) = L => 
   L = qsort([E : E in T, E =< H]) ++ 
       [H] ++
       qsort([E : E in T, E > H]).

The two functions drop and take (standard in functional 
programming) can be defined as: 
drop(Xs,0) = Xs.
drop([],_N) = [].
drop([_X|Xs],N) = drop(Xs,N-1).

take(_Xs,0) = [].
take([],_N) = [].
take([X|Xs],N) = [X] ++ take(Xs,N-1).

Reversing a list can be defined as follows using an 
accumulator:
reverse(L1,L2) => my_rev(L1,L2,[]).
my_rev([],L2,L3) => L2 = L3.
my_rev([X|Xs],L2,Acc) => my_rev(Xs,L2,[X|Acc]).

As will be mentioned again below, the matching between 
different variables - or part of variables - is often done in 
the body and not in the head. 

There are some more comments about pattern matching 
below. 

6 NONDETERMINISM  AND  OTHER 
PROLOG INFLUENCES/DIFFERENCES

Some of the examples above show clear influences from 
Prolog. Here we list some more influences (and 
differences). 

Picat has - as Prolog has - support for nondeterminism 
using a backtracking mechanism to test different 
predicates. This is a really great feature in Picat and is 
one of the reasons I like Picat so much. Or rather: it is the 
combination of the backtracking possibility together with 
the imperative features, support for constraint 
programming etc that make me really like Picat.

6.1 Member

The nondeterministic member predicate in Picat works as 
in Prolog, i.e. it can be used both as a test for membership 
and also for generating all the elements: 
Picat> member(2, [1,2,3])
yes
Picat> member(4, [1,2,3])
no
Picat> member(X, [1,2,3])
   X=1;
   X=2;
   X=3;
   no

As in Prolog we can get the next solution with a ; 
(semicolon) in the Picat shell. 

A personal note: This “double nature” of predicates - 
bidirectionality, reversibility - is one of the features I 
really appreciate in Picat, Prolog, and in CP.

We can define member in Picat as: 
member(X,[Y|_]) ?=> X=Y.
member(X,[_|L]) => member(X,L)

In this definition we see two features of Picat: 

• pattern matching: the pattern [Y|_] matches 
any list and "extracts" the first elements Y to be 
unified with X in the first clause. 

• backtracking: The first rule is defined as a 
backtrackable rule using ?=> (the prepending 
"?" is the marker for backtrackable rules) and 
makes the call nondeterministic. The last rule in 
a definition should be stated as non-
backtrackable, i.e. => (without the ?). 

This predicate now works in the same way as the built-in 
member/2. 

6.2 Predicate facts

Predicate facts are bodyless definitions akin to Prolog's 
"data definition" (but be careful to take this too literarily). 
Predicate facts are prepended by an index declaration to 
make them accessible as data (and this explicit 
declaration is one of the differences from Prolog). 

For example, here is a stripped down version of the 
transitive closure example transitive_closure.pi: 
top ?=> 
    reach(X,Y),
    writeln([X,Y]),
    fail.
top => true.

% Transitive closure right
table
reach(X,Y) ?=> edge(X,Y).
reach(X,Y)  => edge(X,Z),reach(Z,Y).

% the graph
index(-,-)
edge(1,2).
edge(1,3).
edge(2,4).
edge(2,5).
edge(3,6).
% ....

The use of table will cache the reach predicate. In this 
simple example tabling is not needed, but for other 
applications it might be a great advantage. Another 



advantage is that by using table  we avoid the problem of 
possible infinite recursion in reach, and makes it 
independent on the order of edge/2 and reach/2.

6.3 Append

append in Picat is also nondeterministic as in Prolog. 
Here is an example where we generate the different 
sublists X and Y that make up the list [1,2,3,4]. 
Collecting all the results is done with findall which will 
be discussed little more below: 
Picat> Z=findall([X,Y], append(X, Y, [1,2,3,4]))    
Z = [[[],[1,2,3,4]],[[1],[2,3,4]],[[1,2],[3,4]],[[1,2,3],[4]],
[[1,2,3,4],[]]]

As with member, we can define it on our own: 
append(Xs,Ys,Zs) ?=> Xs=[], Ys=Zs.
append(Xs,Ys,Zs) => Xs=[X|XsR], append(XsR,Ys,Zs).

6.4 Findall

As we saw in the example above , findall in Picat works 
much as in Prolog. One difference is that findall in Picat 
is a function, i.e. returns a value and that is why it was 
assigned to the Z variable above. 

6.5 Other nondeterministic predicates

Here are the nondeterministic built-in predicates in 
Picat. Many of these are wrappers to the underlying B-
Prolog predicates. 

• between(From, To, X) 

• append(X,Y,Z) 

• append(W,X,Y,Z) 

• member(Term, List) 

• select(X, List, ResList) 

• find(String, Substring, From, To) 

• find_ignore_case(String, Substring, From, 
To) 

• repeat 

• permutation(List, Perm) 

• nth(I, List, Val) 

• indomain(Var) (CP) 

• indomain_down(Var) (CP) 

• solve(Vars) (CP) 

• solve(Options, Vars) (CP) 
• statistics(Name,Value) 

One can also note that - in contrast to Prolog - length is a 
"plain" (deterministic) function and does not create a list, 
i.e. it is not bidirectional. It just returns the length of the 
list (array, structure). For defining a new list one has to 
use new_list(Length) instead. 

The nondeterministic predicates are great when they are 
needed, but please don’t overuse them. The Picat 
documentation generally recommends writing functions 
rather than predicates since functions are easier to debug 
and since they return exactly one value. 

6.6 An advice to Prolog addicts

In general, Prolog addicts should be a little careful when 
trying to write Prolog code in Picat. Sometimes it works 
very well to write it as in Prolog (with some minor 
modifications) but sometimes it does not work at all. The 
biggest gotcha is probably pattern matching - as 
mentioned above - which looks much like Prolog's 
unification but is more like the pattern matching used in 
functional languages such as Haskell. 

7 SAT SOLVER

Picat also supports solving problems using a SAT solver 
which makes it possible to use almost exactly the same 
code as using the CP solver. The only thing that is needed 
to change is 

import cp.

to 
import sat.

However, the SAT solver does not support all the global 
constraints from the CP solver, but it might be worth 
testing sometimes since it can be very fast compared to a 
CP approach. Still, I tend to rely on CP since then I can 
get all the solutions - or two - which is inefficient or not 
easy to do with the SAT solver used in Picat.  

I have not used the SAT solver very much, but see Neng-
Fa Zhou's (and others) programs at Picat's Projects page 
[9], e.g. mqueens.pi (it is one of the problems from the 
CP-2013 Model and Solve Competition [10]). 

8 PLANNING

One of the things I really like in Picat is that it is now 
easy to implement certain planning problems. I first wrote 
a small planning module (bplan.pi, inspired by Hector J. 
Levesque's version "Thinking as Computation", a rather 
new Prolog AI book). Neng-Fa Zhou later built a much 
faster module (planner.pi) with a lot of different variants, 
both optimality versions (best_plan*) and non-optimality 
versions, bounded and unbounded, and with and without 
costs. 

The planning module is quite simple to use: 

• Define the action predicates (the legal moves): 
action(FromState, ToState, Move, Cost) 

• Define the initialization state (the first 
FromState) 

• Define the goal state(s)/definition: final(State) 
that checks if the goal state has been reached. 

• call the plan* predicate with the appropriate 
arguments 



A simple planning example is the M12 problem 
(test_planner_M12.pi) which has 

• two actions: merge (perfect shuffle) and reverse 
• initial state (the problem instance), e.g. 

[8,11,6,1,10,9,4,3,12,7,2,5] 

• the goal state: [1,2,3,4,5,6,7,8,9,10,11,12].

(The goal state could be written as 1..12.). Here is the 
code for the planner part. Using the table directive is 
sometimes a booster in these kind of planning problems, 
but not always: 
go =>
  Init = [8,11,6,1,10,9,4,3,12,7,2,5],
  time(best_plan_downward(Init, Plan)),
  writeln(Plan),
  writeln(len=Plan.length),
  nl.

final(Goal) =>
  Goal=[1,2,3,4,5,6,7,8,9,10,11,12].

table
% merge move
action([M1,M12,M2,M11,M3,M10,M4,M9,M5,M8,M6,M7], To, M, Cost) ?
=>
   Cost=1, M=m,
   To=[M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12].
% reverse move
action([M12,M11,M10,M9,M8,M7,M6,M5,M4,M3,M2,M1], To,M, Cost) => 
   Cost=1,M=r, To=[M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12].

As mentioned above, it is important to declare the first 
action with ?=> so that it is backtrackable, i.e. if that 
clause fails it will backtrack and test the next rule. 

Picat finds the shortest solution for this problem instance 
(27 steps) in 0.97s:
 [m,m,m,r,m,m,m,r,m,m,m,m,r,m,r,m,r,m,m,r,m,m,r,m,m,m,r] 

where "m" refers to the merge action/move, and "r" to the 
reverse action/move. 

For a maze problem (test_planner.pi), the action (move) 
is simply defined as 
action(From,To,Move,Cost) => 
   maze(From,To),
   Move = [From,To],
   Cost = 1.

where maze(From,To) defines which nodes are connected 
in the maze (graph). And that is about as simple as it 
could be. 

For these kind of "straight" planning problems it's - 
IMHO - much easier to use this approach in Picat than – 
for example - using Constraint Programming.

My other planning models are at 
http://www.hakank.org/picat/#planning_problems, mostly 
quite simple standard problems. Neng-Fa Zhou has 
written more advanced programs, shown at the Picat's 
Projects page. One neat example is his solution of the 
Doubleclock problem from the CP-2013 competition: 
doubleclock.pi  [9] which solves each of the five problem 
instances in about 0.1s (except for #4 which takes 0.6s). 

9 STRUCTURE AND MAP (HASH TABLE)

Picat has a construct for creating a structure - new_struct 
(a kind of poor man’s OOP "object"). Here is a small 
example: 

Picat> S = new_struct(point,3), Name = S.name, Len = 
S.length
S = point(_3b0,_3b4,_3b8)
Name = point
Len = 3

A data structure that I use much more is the inevitable 
map (hash table): 
Picat> M = new_map([one=1,two=2]), M.put(three,3), One = 
M.get(one)

Below is a longer example 
(one_dimensional_cellular_automata.pi) which use a map 
(Seen) to detect fixpoints and cycles in the evolution of 
the patterns, i.e. if we have seen a pattern earlier. It uses 
new_map() for creating the map, has_key(S) for checking 
if pattern S already exists in the map, and put(S,1) to 
add the pattern S to the map. Also note the definition of 
the rules as function facts. 
go =>
  %    _ # # # _ # # _ # _ # _ # _ # _ _ # _ _
  S = [0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0],
  All = ca(S),
  foreach(A in All) println(A.convert()) end,
  writeln(len=All.length),
  nl.

convert(L) = Res =>
  B = "_#",
  Res = [B[L[I]+1] : I in 1..L.length].

ca(S) = All => 
  Len = S.length,
  All := [S],
  % detect fixpoint and cycle
  Seen = new_map(), 
  while (not Seen.has_key(S))
    Seen.put(S,1),
    T = [S[1]] ++ [rule(sublist(S,I-1,I+1)) : I in 2..Len-1] ++ 
[S[Len]],
    All := All ++ [T],
    S := T
  end.

% the rules
index(+)
rule([0,0,0]) = 0. % 
rule([0,0,1]) = 0. %
rule([0,1,0]) = 0. % Dies without enough neighbours
rule([0,1,1]) = 1. % Needs one neighbour to survive
rule([1,0,0]) = 0. %
rule([1,0,1]) = 1. % Two neighbours giving birth
rule([1,1,0]) = 1. % Needs one neighbour to survive
rule([1,1,1]) = 0. % Starved to death.

10 STRINGS

There are some support for strings in Picat, such as 

• ++ (for list/string concatenation) 

• atom_chars(Atom) 

• find(String, Substring,From,To) (nondet) 

• find_ignore_case(String, 
Substring,From,To) 

• join(Tokens) 

• join(Tokens,Separator) 



• number_chars(Num) 

• parse_term(String) 

• split(String) 

• split(String, Separators) 

• to_atom(String) 

• to_binary_string(Int) 

• to_lowercase(String) 

• to_uppercase(String) 

• to_string(Term) 

Unfortunately there is - as of writing -  not any support 
for regular expressions; I hope this will come soon 
enough in Picat. However, since a string is (just) an array 
of characters, much of the general list handling can be 
used for manipulating strings. 

11 OTHER FEATURES IN PICAT

Picat has many other features that are not mentioned in 
this paper. For example: 

• debugging and trace, akin to Prolog's debug 
facilities 

• os module for handling files and directories. 
Reading files is often much easier to do than in 
standard Prolog 

• math module for standard math functions, for 
example primes(Int), prime(Int), random(), 
random2(). 

There are many other useful predicates that are not 
mentioned here. See the Picat User's Guide for a detailed 
description. 

12 MY CONTRIBUTIONS TO PICAT

Picat was originally created by Neng-Fa Zhou and 
Jonathan Fruhman. After the release in May 2013, I have 
done some contributions to the code as well as bug 
reports, suggestions etc, and I am now sometimes 
mentioned as one of the Picat developers/collaborators. 
Please note that I only develop things in Picat, not in the 
C or B-Prolog level. Some of the modules I have 
contributed that are in the Picat distribution are: 

• util.pi: One of the utilities modules 
• picat_lib_aux.pi: Utilities used by other modules 
• apl_util.pi: Utilities inspired by the languages 

APL and K. Most of this is as a proof-of-concept. 
• set_util.pi: Set utilities (ported from Neng-Fa's 

set utilities in B-Prolog) 

Also, many of the Project Euler programs above #20 at 
the Picat's Project page  are mine. Also see my own 
collection of Euler programs 

(http://www.hakank.org/picat/#euler) where I have some 
different variants for the problems below problem #20. 

As of writing there are almost 450 public Picat 
programs/models on my My Picat Page 
(http://www.hakank.org/picat/).

They are mostly in the following areas:

• Constraint Programming
• Planning problems
• Recreational mathematics and puzzles
• Project Euler [11] 
• Rosetta Code [12] programs 
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