
∋

INTRODUCTION

Picat [1] is a new programming language created by
Neng-Fa Zhou and Jonathan Fruhman. The specification
was published in December 2012. The first official (beta)
release was in May 2013.

The main reason I started to try out Picat in May 2013
was that it has support for Constraint Programming (CP),
which is a programming paradigm that I am very
interested in. Right from the beginning I liked this
language – and not just for the support for CP - and in
this paper I hope to show why. I should also say that the
examples shown here are not just for Constraint
Programming, but also traditional backtracking (à la
Prolog), tabling (memoization), imperative constructs,
etc, i.e. what makes Picat Picat.

The name Picat is an acronym and is explained in the
quote below, borrowed from the Picat site [1]:

Picat is a general-purpose language that
incorporates features from logic programming,
functional programming, and scripting languages.
The letters in the name summarize Picat's
features:

• Pattern-matching [...]
• Imperative [...]
• Constraints [...]
• Actors [...]
• Tabling [...]

Of these general features, I have mostly tested constraints,
pattern-matching, imperative programming constructs,
and tabling, but have not played much with actors directly
and will not mention them here.

Let us start with some simple examples to show these
features.

All the programs and models in this paper – and many
more - are available at my My Picat Page [2]
(http://www.hakank.org/picat/).

1 CONSTRAINTS

Here is an example for the inevitable SEND + MORE =
MONEY problem (send_more_money.pi), which clearly
shows the influences of Prolog:

import cp.

sendmore(Digits) =>
 Digits = [S,E,N,D,M,O,R,Y],
 Digits :: 0..9,

 all_different(Digits),
 S #> 0,
 M #> 0,
 1000*S + 100*E + 10*N + D
 + 1000*M + 100*O + 10*R + E
 #= 10000*M + 1000*O + 100*N + 10*E + Y,

 solve(Digits).

Except for the => operator, it looks very much like Prolog
using Constraint Logic Programming (CLP). I explain the
=> and how it is different from Prolog's :- later on, and
will also mention some other similarities/differences
from/with Prolog.

Another mandatory example when describing Constraint
Programming is Sudoku (sudoku.pi) where we now see
more differences between traditional Prolog and Picat in
the use of the foreach loop:
import cp.
import util.

go =>
 time2(sudoku(1)).

sudoku(ProblemName) =>
 problem(ProblemName, Board),
 print_board(Board),
 sudoku(3, Board),
 print_board(Board).

sudoku(N, Board) =>
 N2 = N*N,

 Vars = array_matrix_to_list(Board),
 Vars :: 1..N2,

 foreach(Row in Board) all_different(Row) end,
 foreach(Column in transpose(Board))

My First Look At Picat as a Modeling Language for Constraint Solving and
Planning

Håkan Kjellerstrand1

1. Independent Researcher, Malmoe, Sweden
E-mail: hakank@gmail.com

Abstract: Picat is a new and interesting programming language, combing many different programming paradigms:
logic programming, imperative programming, functional programming, constraint programming, and tabling. This
paper is a personal discussion of some of Picat's features with several code examples.

Key Words: Picat, Constraint Programming, Logic Programming, Planning, Prolog

 all_different(Column) end.
 foreach(I in 1..N..N2, J in 1..N..N2)
 all_different([Board[I+K,J+L] : K in 0..N-1, L in 0..N-1])
 end,

 solve([ff,down], Vars).

print_board(Board) =>
 N = Board.length,
 foreach(I in 1..N)
 foreach(J in 1..N)
 X = Board[I,J],
 if var(X) then printf(" _") else printf(" %w", X) end
 end,
 nl
 end,
 nl.

problem(1, Data) =>
Data = [
 [_, _, 2, _, _, 5, _, 7, 9],
 [1, _, 5, _, _, 3, _, _, _],
 [_, _, _, _, _, _, 6, _, _],
 [_, 1, _, 4, _, _, 9, _, _],
 [_, 9, _, _, _, _, _, 8, _],
 [_, _, 4, _, _, 9, _, 1, _],
 [_, _, 9, _, _, _, _, _, _],
 [_, _, _, 1, _, _, 3, _, 6],
 [6, 8, _, 3, _, _, 4, _, _]].

What I have understood from [3], the loop construct was
one of the reasons that Neng-Fa Zhou wanted to create a
new language, since he was not satisfied with the foreach
loop he implemented in B-Prolog [4]. (Many of my Picat
models/programs are directly ported from the B-Prolog
models I wrote in 2013. See my B-Prolog page [5], e.g.
sudoku.pl.)

One thing that differs between Picat's foreach loop
compared to B-Prolog's (as well as ECLiPSe's and
SICStus Prolog's) is that the user does not have to
explicitly declare local (or global) variables, which makes
it simpler to use and read.

I will describe more CP in Picat below, but will first
describe some other Picat features.

2 TABLING

“Tabling” here refers to memoization ("caching the
results", see [6]). A simple example of tabling is to start
with this the standard recursive definition of a Fibonacci
number:

table
fibt(0)=1.
fibt(1)=1.
fibt(N)=F,N>1 => F=fibt(N-1)+fibt(N-2).

This is normally very slow for larger N because of the
massive number of recursive steps needed. Using the table
declaration before the predicate will automatically have
all the calls and their answers cached. Subsequent calls
are resolved by table lookups, which can speed up the
program considerably.

Another example of its use is in euler2.pi (Project Euler
problem #2), where the object is to find the sum of all
even-valued terms in the sequence that do not exceed four
million. Here is one way of implementing this, using list
comprehension:
euler2 =>
 writeln(sum([F : N in 1..100, F = fibt(N), F < 4000000, F mod
2 =:= 0])).

Finding this sum takes 0.015s (with the overload of
starting Picat etc). If we do not table the values then it is
much (much!) slower: fibt(100) is
573147844013817084101 (~5.73e+20), which requires an
exponential number of recursive steps to compute. Also,
here we see that Picat supports big integers as well.

Please note that tabling in some cases might be slower
because of the memory overhead involved, so one has to
be careful and test both with and without tabling.

Another example of tabling is for dynamic
programming. Here is an example for calculating the
edit distance, which is taken from Picat's example exs.pi:

% computing the minimal editing distance
% of two given lists
table(+,+,min)
edit([],[],D) => D=0.
edit([X|Xs],[X|Ys],D) => % copy
 edit(Xs,Ys,D).
edit(Xs,[_Y|Ys],D) ?=> % insert
 edit(Xs,Ys,D1),
 D=D1+1.
edit([_X|Xs],Ys,D) => % delete
 edit(Xs,Ys,D1),
 D=D1+1.

(The symbols => and ?=> will be explained later.)

3 IMPERATIVE PROGRAMMING

Regarding loops (which can be seen as a trademark in
imperative programming), we have already seen the
foreach loop in the Sudoku example. Picat has some
more of the traditional imperative programming
constructs: while loops and assignments.

The Fibonacci example shown above (Project Euler #2,
using the list comprehension) has the drawback of a hard
coded limit that checks all N in the range 1..100 (it might
be considered cheating to use a fixed range); this range
was found by some experimentation and is actually not
the smallest range. In Picat it is also possible to use a
while loop for this, though not as nice looking as the list
comprehension version. This is traditional imperative
programming. It also shows an example of
(re)assignments using the := operator:
euler2b =>
 I = 1,
 Sum = I,
 F = fibt(I),
 while (F < 4000000)
 if F mod 2 == 0 then
 Sum := Sum + F
 end,
 I := I + 1,
 F := fibt(I)
 end,
 writeln(Sum).

This version also calculates the solution in 0.015s.

Sometimes the use of list comprehension and while loops
might be slower than writing a predicate in traditional
recursive (“Prolog”) style, and it is sometimes worthwhile
to try this approach as well.

4 MORE CONSTRAINT PROGRAMMING

Here are some more examples of using CP in Picat.

6.1 Element Constraint

In Picat, as in B-Prolog (and in many other CP systems),
the element constraint (List[Ith]=Value) has to be
written explicitly using the predicate
 element(Ith, List, Value)

when Ith is a decision variable. However, if Ith is a pain
integer, it can in Picat be stated more naturally as
 List[Ith] = Value

or

 List[Ith] #= Value

if List is a list of decision variables.

Readers of my My Constraint Programming Blog [7]
might remember that I quite often complain how hard it is
to write a matrix element constraint in different CP
systems, and this applies to Picat as well. For example, in
circuit.pi, in order to implement the circuit constraint I
would like to use this matrix element construct to
naturally state the constraint, but this is not allowed:
foreach(I in 2..N)
 % this is not allowed
 Z[I] = X[Z[I-1]]
end

Instead, I have to rewrite it. Here is one version:
import cp.

% ...

foreach(I in 2..N)
 Z1 #= Z[I-1],
 element(Z1,X,X2),
 Z[I] #= X2
end,

In stable_marriage.pi a more general version,
matrix_element, is used:
matrix_element(X, I, J, Val) =>
 element(I, X, Row),
 element(J, Row, Val).

This version (using two element) can be very good
sometimes, but depending on the type of the variables the
above constraint does not work correctly; instead some of
following variants have to be used. Sometimes all variants
have to be tested. Note: all of them except one are
commented out:
import cp.

% ...

matrix_element(X, I, J, Val) =>
 element(I, X, Row),
 element(J, Row, Val).

% matrix_element(X, I, J, Val) =>
% nth(I, X, Row),
% element(J, Row, Val).

% matrix_element(X, I, J, Val) =>
% freeze(I, (nth(I, X, Row),freeze(J,nth(J,Row,Val)))).

% matrix_element(X, I, J, Val) =>
% freeze(I, (element(I, X, Row),freeze(J,element(J,Row,Val)))).

The built-in freeze(X, Call) predicate delays the call to
Call until X becomes a non-variable term.

6.2 Reification, alldifferent_except_0

Picat supports reifications with a nice syntax I expect
from a high level CP system. Note that #/\ is "and" for
FD variables (“or” is denoted #\/). Here is the
alldifferent_except_0 constraint (see
alldifferent_except_0.pi for the full model):
import cp.

alldifferent_except_0(Xs) =>
 foreach(I in 1..Xs.length, J in 1..I-1)
 (Xs[I] #!= 0 #/\ Xs[J] #!= 0) #=> (Xs[I] #!= Xs[J])
 end.

6.3 N-queens

Below are some different implementations of N-queens,
taken from nqueens.pi.
import cp.

queens3(N, Q) =>
 Q=new_list(N),
 Q :: 1..N,
 all_different(Q),
 all_different([$Q[I]-I : I in 1..N]),
 all_different([$Q[I]+I : I in 1..N]),
 solve([ff],Q).

% Using all_distinct instead
queens3b(N, Q) =>
 Q=new_list(N),
 Q :: 1..N,
 all_distinct(Q),
 all_distinct([$Q[I]-I : I in 1..N]),
 all_distinct([$Q[I]+I : I in 1..N]),
 solve([ff],Q).

queens4(N, Q) =>
 Q = new_list(N),
 Q :: 1..N,
 foreach(A in [-1,0,1])
 all_different([$Q[I]+I*A : I in 1..N])
 end,
 solve([ff],Q).

Note that in queens3 we have to use $Q[I]-I (i.e. Q[I]
prepended with a $) since it is a term, not a function call,
and must be evaluated ("escaped").

6.4 Magic Square

Below is a magic squares implementation in Picat, taken
from magic_square.pi. One thing to notice is the use of
rows(), columns(), diagonal1(), and diagonal2(), from
Picat's util module.
import cp.
import utils.

magic2(N,Square) =>
 writef("\n\nN: %d\n", N),
 NN = N*N,
 Sum = N*(NN+1)//2,% magical sum
 writef("Sum = %d\n", Sum),

 Square = new_array(N,N),
 Square :: 1..NN,

 all_different(Square),

 foreach(Row in Square.rows()) Sum #= sum(Rows) end,
 foreach(Column in Square.columns()) Sum #= sum(Column) end,

 % diagonal sums
 Sum #= sum(Square.diagonal1()),
 Sum #= sum(Square.diagonal2()),

 % Symmetry breaking
 Square[1,1] #< Square[1,N],
 Square[1,1] #< Square[N,N],
 Square[1,1] #< Square[N,1],
 Square[1,N] #< Square[N,1],

 solve([ffd,updown],Square),

 print_square(Square).

6.5 Magic Sequence

Another standard CP problem is magic_sequence.pi:
import cp.

magic_sequence(N, Sequence) =>
 writef("\n%d: ",N),
 Sequence = new_list(N),
 Sequence :: 0..N-1,
 foreach(I in 0..N-1) count(I,Sequence,#=,Sequence[I+1]) end,
 N #= sum(Sequence),
 Integers = [I : I in 0..N-1],
 N = scalar_product(Integers, Sequence),
 solve([ff], Sequence).

scalar_product(A, X) = Product =>
 Product #= sum([S : I in 1..A.length, S #= A[I]*X[I]]).

Note that I tend to use count(Var, Vars, Relation, N)
instead of the built-in global_cardinality(List,
Pairs) since it is more natural for me.

6.6 Least Diff problem, optimization

The Least Diff problem is a simple optimization problem
in Picat: Minimize the difference between ABCDE-FGHIJ
where the letters A..J are distinct integers (in the domain
0..9).
import cp.

least_diff(L,Diff) =>
 L = [A,B,C,D,E, F,G,H,I,J],
 L :: 0..9,

 all_different(L),

 X #= 10000*A + 1000*B + 100*C + 10*D + E,
 Y #= 10000*F + 1000*G + 100*H + 10*I + J,

 Diff #= X - Y,
 Diff #> 0,
 solve([$min(Diff)], L).

The interesting part is the objective $min(Diff) (note the
"$") which defines the objective value.

For more advanced models one can use the
$report(Goal) to show the progress of the objective.
Here is an example from einav_puzzle.pi:
 solve($[min(TotalSum), report(printf("Found %d\n",
TotalSum)), ffd],Vars),

Without report(Goal) the solution is only shown after
the solver has finished the search, which may take a
considerable amount time.

6.7 Table constraint

Picat has a table global constraint: the in_table built-in.
Here is a simple example using table constraint:
traffic_lights.pi (CSPLib #16) which use the list Allowed
to state which combinations are allowed.
import cp.

traffic_lights_table(V, P) =>
 N = 4,
 % allowed/1 as a table (translated)
 Allowed = [(1,1,3,3),
 (2,1,4,1),
 (3,3,1,1),
 (4,1,2,1)],

 V = new_list(N), V :: 1..N,
 P = new_list(N), P :: 1..N,
 foreach(I in 1..N, J in 1..N)
 JJ = (1+I) mod N,
 if J #= JJ then
 VI = V[I], PI = P[I],
 VJ = V[J], PJ = P[J],
 % Table constraint
 (VI, PI, VJ, PJ) in Allowed
 end
 end,
 Vars = V ++ P,
 solve(Vars).

The use of in_table requires that the values are integers
so we have to translate to/from integers in this version.

Another example of table constraint is hidato.pi (though it
is not very efficient).

6.8 Global Constraints

Picat supports the most common global constraints as
shown in the list below. See Picat Guide [8], section 11.5
for details.

• all_different(List)

• all_distinct(List)

• assignment(List) (a.k.a. inverse)

• circuit(List)

• count(Value,List,Rel,N)

• cumulative(Starts,Durations,Resources,
Limit)

• diffn(RectangleList)

• disjunctive_tasks(Tasks)

• element(I,List, V)

• global_cardinality(List, Pairs) (I tend to not
use this so much since it is not as natural as using count/4)

• neqs(NegList)

• serialized(Starts,Durations)

• subcircuit(List)
• in_table used as the global constraint table (not to be

confused with tabling).

In the module cp_utils.pi, I have also defined some other
useful decompositions of global constraints:

• matrix_element (some different versions)

• to_num

• latin_square

• increasing

• decreasing

• scalar_product (with a relation)

• alldifferent_except_0

• nvalue

• nvalues

• global_cardinality(Array, GccList)
• lex2, lex2eq, lex_less, lex_lesseq,

lex_greater, lex_greatereq, lex_less2
(alternative variant)

6.9 Labeling

Most of the standard variable and value heuristics are
supported, though I do miss options for using random
assignments. Some of the examples above show how to
label the variables in the solve predicate. Here the ff is

first-fail variable labeling, and down means that a variable
is labeled from the largest value to the smallest.
 solve([ff,down], Vars)

See the Picat Guide for descriptions of the options to
solve and other solver options.

5 PATTERN MATCHING

Pattern matching is Picat is more influenced by pattern
matching in functional programming than by Prolog's
unification. This may confuse some programmers with a
Prolog background.

Here is a definition of quick sort which shows some of
the pattern matching constructs in Picat. It also shows
how to define functions, i.e. predicates with one return
value (the return value is placed after the predicate name,
e.g. = L):

qsort([]) = L => L = [].
qsort([H|T]) = L =>
 L = qsort([E : E in T, E =< H]) ++
 [H] ++
 qsort([E : E in T, E > H]).

The two functions drop and take (standard in functional
programming) can be defined as:
drop(Xs,0) = Xs.
drop([],_N) = [].
drop([_X|Xs],N) = drop(Xs,N-1).

take(_Xs,0) = [].
take([],_N) = [].
take([X|Xs],N) = [X] ++ take(Xs,N-1).

Reversing a list can be defined as follows using an
accumulator:
reverse(L1,L2) => my_rev(L1,L2,[]).
my_rev([],L2,L3) => L2 = L3.
my_rev([X|Xs],L2,Acc) => my_rev(Xs,L2,[X|Acc]).

As will be mentioned again below, the matching between
different variables - or part of variables - is often done in
the body and not in the head.

There are some more comments about pattern matching
below.

6 NONDETERMINISM AND OTHER
PROLOG INFLUENCES/DIFFERENCES

Some of the examples above show clear influences from
Prolog. Here we list some more influences (and
differences).

Picat has - as Prolog has - support for nondeterminism
using a backtracking mechanism to test different
predicates. This is a really great feature in Picat and is
one of the reasons I like Picat so much. Or rather: it is the
combination of the backtracking possibility together with
the imperative features, support for constraint
programming etc that make me really like Picat.

6.1 Member

The nondeterministic member predicate in Picat works as
in Prolog, i.e. it can be used both as a test for membership
and also for generating all the elements:
Picat> member(2, [1,2,3])
yes
Picat> member(4, [1,2,3])
no
Picat> member(X, [1,2,3])
 X=1;
 X=2;
 X=3;
 no

As in Prolog we can get the next solution with a ;
(semicolon) in the Picat shell.

A personal note: This “double nature” of predicates -
bidirectionality, reversibility - is one of the features I
really appreciate in Picat, Prolog, and in CP.

We can define member in Picat as:
member(X,[Y|_]) ?=> X=Y.
member(X,[_|L]) => member(X,L)

In this definition we see two features of Picat:

• pattern matching: the pattern [Y|_] matches
any list and "extracts" the first elements Y to be
unified with X in the first clause.

• backtracking: The first rule is defined as a
backtrackable rule using ?=> (the prepending
"?" is the marker for backtrackable rules) and
makes the call nondeterministic. The last rule in
a definition should be stated as non-
backtrackable, i.e. => (without the ?).

This predicate now works in the same way as the built-in
member/2.

6.2 Predicate facts

Predicate facts are bodyless definitions akin to Prolog's
"data definition" (but be careful to take this too literarily).
Predicate facts are prepended by an index declaration to
make them accessible as data (and this explicit
declaration is one of the differences from Prolog).

For example, here is a stripped down version of the
transitive closure example transitive_closure.pi:
top ?=>
 reach(X,Y),
 writeln([X,Y]),
 fail.
top => true.

% Transitive closure right
table
reach(X,Y) ?=> edge(X,Y).
reach(X,Y) => edge(X,Z),reach(Z,Y).

% the graph
index(-,-)
edge(1,2).
edge(1,3).
edge(2,4).
edge(2,5).
edge(3,6).
%

The use of table will cache the reach predicate. In this
simple example tabling is not needed, but for other
applications it might be a great advantage. Another

advantage is that by using table we avoid the problem of
possible infinite recursion in reach, and makes it
independent on the order of edge/2 and reach/2.

6.3 Append

append in Picat is also nondeterministic as in Prolog.
Here is an example where we generate the different
sublists X and Y that make up the list [1,2,3,4].
Collecting all the results is done with findall which will
be discussed little more below:
Picat> Z=findall([X,Y], append(X, Y, [1,2,3,4]))
Z = [[[],[1,2,3,4]],[[1],[2,3,4]],[[1,2],[3,4]],[[1,2,3],[4]],
[[1,2,3,4],[]]]

As with member, we can define it on our own:
append(Xs,Ys,Zs) ?=> Xs=[], Ys=Zs.
append(Xs,Ys,Zs) => Xs=[X|XsR], append(XsR,Ys,Zs).

6.4 Findall

As we saw in the example above , findall in Picat works
much as in Prolog. One difference is that findall in Picat
is a function, i.e. returns a value and that is why it was
assigned to the Z variable above.

6.5 Other nondeterministic predicates

Here are the nondeterministic built-in predicates in
Picat. Many of these are wrappers to the underlying B-
Prolog predicates.

• between(From, To, X)

• append(X,Y,Z)

• append(W,X,Y,Z)

• member(Term, List)

• select(X, List, ResList)

• find(String, Substring, From, To)

• find_ignore_case(String, Substring, From,
To)

• repeat

• permutation(List, Perm)

• nth(I, List, Val)

• indomain(Var) (CP)

• indomain_down(Var) (CP)

• solve(Vars) (CP)

• solve(Options, Vars) (CP)
• statistics(Name,Value)

One can also note that - in contrast to Prolog - length is a
"plain" (deterministic) function and does not create a list,
i.e. it is not bidirectional. It just returns the length of the
list (array, structure). For defining a new list one has to
use new_list(Length) instead.

The nondeterministic predicates are great when they are
needed, but please don’t overuse them. The Picat
documentation generally recommends writing functions
rather than predicates since functions are easier to debug
and since they return exactly one value.

6.6 An advice to Prolog addicts

In general, Prolog addicts should be a little careful when
trying to write Prolog code in Picat. Sometimes it works
very well to write it as in Prolog (with some minor
modifications) but sometimes it does not work at all. The
biggest gotcha is probably pattern matching - as
mentioned above - which looks much like Prolog's
unification but is more like the pattern matching used in
functional languages such as Haskell.

7 SAT SOLVER

Picat also supports solving problems using a SAT solver
which makes it possible to use almost exactly the same
code as using the CP solver. The only thing that is needed
to change is

import cp.

to
import sat.

However, the SAT solver does not support all the global
constraints from the CP solver, but it might be worth
testing sometimes since it can be very fast compared to a
CP approach. Still, I tend to rely on CP since then I can
get all the solutions - or two - which is inefficient or not
easy to do with the SAT solver used in Picat.

I have not used the SAT solver very much, but see Neng-
Fa Zhou's (and others) programs at Picat's Projects page
[9], e.g. mqueens.pi (it is one of the problems from the
CP-2013 Model and Solve Competition [10]).

8 PLANNING

One of the things I really like in Picat is that it is now
easy to implement certain planning problems. I first wrote
a small planning module (bplan.pi, inspired by Hector J.
Levesque's version "Thinking as Computation", a rather
new Prolog AI book). Neng-Fa Zhou later built a much
faster module (planner.pi) with a lot of different variants,
both optimality versions (best_plan*) and non-optimality
versions, bounded and unbounded, and with and without
costs.

The planning module is quite simple to use:

• Define the action predicates (the legal moves):
action(FromState, ToState, Move, Cost)

• Define the initialization state (the first
FromState)

• Define the goal state(s)/definition: final(State)
that checks if the goal state has been reached.

• call the plan* predicate with the appropriate
arguments

A simple planning example is the M12 problem
(test_planner_M12.pi) which has

• two actions: merge (perfect shuffle) and reverse
• initial state (the problem instance), e.g.

[8,11,6,1,10,9,4,3,12,7,2,5]

• the goal state: [1,2,3,4,5,6,7,8,9,10,11,12].

(The goal state could be written as 1..12.). Here is the
code for the planner part. Using the table directive is
sometimes a booster in these kind of planning problems,
but not always:
go =>
 Init = [8,11,6,1,10,9,4,3,12,7,2,5],
 time(best_plan_downward(Init, Plan)),
 writeln(Plan),
 writeln(len=Plan.length),
 nl.

final(Goal) =>
 Goal=[1,2,3,4,5,6,7,8,9,10,11,12].

table
% merge move
action([M1,M12,M2,M11,M3,M10,M4,M9,M5,M8,M6,M7], To, M, Cost) ?
=>
 Cost=1, M=m,
 To=[M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12].
% reverse move
action([M12,M11,M10,M9,M8,M7,M6,M5,M4,M3,M2,M1], To,M, Cost) =>
 Cost=1,M=r, To=[M1,M2,M3,M4,M5,M6,M7,M8,M9,M10,M11,M12].

As mentioned above, it is important to declare the first
action with ?=> so that it is backtrackable, i.e. if that
clause fails it will backtrack and test the next rule.

Picat finds the shortest solution for this problem instance
(27 steps) in 0.97s:
 [m,m,m,r,m,m,m,r,m,m,m,m,r,m,r,m,r,m,m,r,m,m,r,m,m,m,r]

where "m" refers to the merge action/move, and "r" to the
reverse action/move.

For a maze problem (test_planner.pi), the action (move)
is simply defined as
action(From,To,Move,Cost) =>
 maze(From,To),
 Move = [From,To],
 Cost = 1.

where maze(From,To) defines which nodes are connected
in the maze (graph). And that is about as simple as it
could be.

For these kind of "straight" planning problems it's -
IMHO - much easier to use this approach in Picat than –
for example - using Constraint Programming.

My other planning models are at
http://www.hakank.org/picat/#planning_problems, mostly
quite simple standard problems. Neng-Fa Zhou has
written more advanced programs, shown at the Picat's
Projects page. One neat example is his solution of the
Doubleclock problem from the CP-2013 competition:
doubleclock.pi [9] which solves each of the five problem
instances in about 0.1s (except for #4 which takes 0.6s).

9 STRUCTURE AND MAP (HASH TABLE)

Picat has a construct for creating a structure - new_struct
(a kind of poor man’s OOP "object"). Here is a small
example:

Picat> S = new_struct(point,3), Name = S.name, Len =
S.length
S = point(_3b0,_3b4,_3b8)
Name = point
Len = 3

A data structure that I use much more is the inevitable
map (hash table):
Picat> M = new_map([one=1,two=2]), M.put(three,3), One =
M.get(one)

Below is a longer example
(one_dimensional_cellular_automata.pi) which use a map
(Seen) to detect fixpoints and cycles in the evolution of
the patterns, i.e. if we have seen a pattern earlier. It uses
new_map() for creating the map, has_key(S) for checking
if pattern S already exists in the map, and put(S,1) to
add the pattern S to the map. Also note the definition of
the rules as function facts.
go =>
 % _ # # # _ # # _ # _ # _ # _ # _ _ # _ _
 S = [0,1,1,1,0,1,1,0,1,0,1,0,1,0,1,0,0,1,0,0],
 All = ca(S),
 foreach(A in All) println(A.convert()) end,
 writeln(len=All.length),
 nl.

convert(L) = Res =>
 B = "_#",
 Res = [B[L[I]+1] : I in 1..L.length].

ca(S) = All =>
 Len = S.length,
 All := [S],
 % detect fixpoint and cycle
 Seen = new_map(),
 while (not Seen.has_key(S))
 Seen.put(S,1),
 T = [S[1]] ++ [rule(sublist(S,I-1,I+1)) : I in 2..Len-1] ++
[S[Len]],
 All := All ++ [T],
 S := T
 end.

% the rules
index(+)
rule([0,0,0]) = 0. %
rule([0,0,1]) = 0. %
rule([0,1,0]) = 0. % Dies without enough neighbours
rule([0,1,1]) = 1. % Needs one neighbour to survive
rule([1,0,0]) = 0. %
rule([1,0,1]) = 1. % Two neighbours giving birth
rule([1,1,0]) = 1. % Needs one neighbour to survive
rule([1,1,1]) = 0. % Starved to death.

10 STRINGS

There are some support for strings in Picat, such as

• ++ (for list/string concatenation)

• atom_chars(Atom)

• find(String, Substring,From,To) (nondet)

• find_ignore_case(String,
Substring,From,To)

• join(Tokens)

• join(Tokens,Separator)

• number_chars(Num)

• parse_term(String)

• split(String)

• split(String, Separators)

• to_atom(String)

• to_binary_string(Int)

• to_lowercase(String)

• to_uppercase(String)

• to_string(Term)

Unfortunately there is - as of writing - not any support
for regular expressions; I hope this will come soon
enough in Picat. However, since a string is (just) an array
of characters, much of the general list handling can be
used for manipulating strings.

11 OTHER FEATURES IN PICAT

Picat has many other features that are not mentioned in
this paper. For example:

• debugging and trace, akin to Prolog's debug
facilities

• os module for handling files and directories.
Reading files is often much easier to do than in
standard Prolog

• math module for standard math functions, for
example primes(Int), prime(Int), random(),
random2().

There are many other useful predicates that are not
mentioned here. See the Picat User's Guide for a detailed
description.

12 MY CONTRIBUTIONS TO PICAT

Picat was originally created by Neng-Fa Zhou and
Jonathan Fruhman. After the release in May 2013, I have
done some contributions to the code as well as bug
reports, suggestions etc, and I am now sometimes
mentioned as one of the Picat developers/collaborators.
Please note that I only develop things in Picat, not in the
C or B-Prolog level. Some of the modules I have
contributed that are in the Picat distribution are:

• util.pi: One of the utilities modules
• picat_lib_aux.pi: Utilities used by other modules
• apl_util.pi: Utilities inspired by the languages

APL and K. Most of this is as a proof-of-concept.
• set_util.pi: Set utilities (ported from Neng-Fa's

set utilities in B-Prolog)

Also, many of the Project Euler programs above #20 at
the Picat's Project page are mine. Also see my own
collection of Euler programs

(http://www.hakank.org/picat/#euler) where I have some
different variants for the problems below problem #20.

As of writing there are almost 450 public Picat
programs/models on my My Picat Page
(http://www.hakank.org/picat/).

They are mostly in the following areas:

• Constraint Programming
• Planning problems
• Recreational mathematics and puzzles
• Project Euler [11]
• Rosetta Code [12] programs

REFERENCES

[1] http://picat-lang.org/
[2] http://www.hakank.org/picat/
[3] Neng-Fa Zhou: comp.lang.prolog, thread, "Picat: A New

Logic-Based Language" https://groups.google.com/forum/#!
msg/comp.lang.prolog/p6nUtaCAs8A/JQ7b0LY5vfsJ
(Google Groups)

[4] http://www.probp.com/
[5] http://www.hakank.org/bprolog/
[6] http://en.wikipedia.org/wiki/Memoization
[7] http://www.hakank.org/constraint_programmming_blog/
[8] http://picat-lang.org/download/picat_guide.pdf
[9] http://picat-lang.org/projects.html
[10] http://cp2013.a4cp.org/program/competition
[11] http://projecteuler.net/
[12] http://rosettacode.org/wiki/Rosetta_Code

	1 CONSTRAINTS
	2 TABLING
	3 IMPERATIVE PROGRAMMING
	4 MORE CONSTRAINT PROGRAMMING
	5 PATTERN MATCHING
	6 NONDETERMINISM AND OTHER PROLOG INFLUENCES/DIFFERENCES
	7 SAT SOLVER
	8 PLANNING
	9 STRUCTURE AND MAP (HASH TABLE)
	10 STRINGS
	11 OTHER FEATURES IN PICAT
	12 MY CONTRIBUTIONS TO PICAT

