
1

Tabling for Planning
Modeling and Solving Planning Problems With Picat

Neng-Fa Zhou
(CUNY Brooklyn College & GC)

With contributions by Roman Bartak, Agostino Dovier,
Hakan Kjellerstrand, and Jonathan Fruhman

ECAI’14 Tutorial, Prague
8/18/2014

ECAI'14 Tabling for Planning, N.F. Zhou

Outline of Tutorial

 An overview of Picat [20m]
 Tabling in Picat [10m]
 Planning with Picat [50m]

 The planner module of Picat
 Modeling techniques
 Modeling examples

 Summary

2ECAI'14 Tabling for Planning, N.F. Zhou

An Overview of Picat
 Why the name “PICAT”?

 Pattern-matching, Imperative, Constraints, Actors, Tabling

 Core logic programming concepts (Prolog-like)
 Logic variables (arrays and maps are terms)
 Implicit pattern-matching and explicit unification
 Explicit non-determinism

 Language constructs for scripting
 Functions, loops, and list comprehension

 Modeling and solving
 CP, SAT, and MIP for constraint solving
 Tabling for dynamic programming and planning

3ECAI'14 Tabling for Planning, N.F. Zhou

Logic Variables

4ECAI'14

Picat> A = new_array(2,3), A[1,1] = 1, A[2,3] = 5
A = {{1, _3d4, _3d8}, {_3e0, _3e4, 5}}

Picat> M = new_map([alpha=1, beta=2]), M.get(alpha) = A
M = (map)[alpha = 1,beta = 2]
A = 1

Basic data types

Tabling for Planning, N.F. Zhou

Pre-created Maps
(Picat has no assert/retract)

 Map = get_heap_map()
 Stored on the heap.
 Like a normal map, updates are undone on backtracking.

 Map = get_global_map()
 Stored in the global area.
 Updates are not undone on backtracking.

 Map = get_table_map()
 Stored in the table area; keys and values are hash-consed
 Updates are not undone on backtracking.

Tabling for Planning, N.F. Zhou 5ECAI'14

Pattern Matching

 Pattern-matching rules
 Pattern-matching is adequate for many applications

 NLP, state-space search, …

 Pattern-matching rules are fully indexed
 Picat can be more scalable than Prolog

 Explicit unification (X=Y) is supported
 As-pattern

6ECAI'14

Head, Cond => Body.

Tabling for Planning, N.F. Zhou

is_sorted([X|L@[Y|_]]) => X =< Y, is_sorted(L).

Explicit Non-determinism

 Explicit non-determinism
 Although non-determinism is helpful for many

computations, deterministic computations are the majority
 The cut operator is unneeded
 Use the once operator to remove choice points

7ECAI'14

member(X,[Y|_]) ?=> X=Y.
member(X,[_|L]) => member(X,L).

Tabling for Planning, N.F. Zhou

8

Functions

 Many logic languages support functions
 Curry, Erlang, Mozart-OZ,…

 Functions are easier to use than relations
 Function calls never fail (at least built-in functions)
 Function calls can be nested
 Directionality helps readability

 Special notation is needed for structures

ECAI'14

f(A1,…,An)=Exp, Cond => Body.

fib(N)=1, N=<1 => true.
fib(N)=fib(N-1)+fib(N-2).

Picat> S = $student(mary,cs,3.8)

Tabling for Planning, N.F. Zhou

Loops

9ECAI'14

 Loops are convenient for scripting and
modeling purposes
 Lisp, Python, C#, Java, C++11, …

 Loops are compiled to tail-recursion

foreach(E1 in D1, Cond1 , . . ., En in Dn, Condn)
Goal

end

Tabling for Planning, N.F. Zhou

Loops

 Scopes of variables in loops
 Variables that occur within a loop but not before in its outer scope

are local to each iteration

10

p(A) =>
q(X),
foreach(I in 1 .. A.length)

A[I] = (X,Y,Y,_)
end.

ECAI'14

X is global, and Y is local.
The anonymous variable is always local.

Tabling for Planning, N.F. Zhou

List Comprehension

 Convenient for constructing lists
 Supported by more than 30 languages, according to Wiki.

 Compiled to a foreach loop
 The assignment operator (:=) is used to accumulate values

11ECAI'14

[T : E1 in D1, Cond1 , . . ., En in Dn, Condn]

Tabling for Planning, N.F. Zhou

12

Picat = Python +
Pattern Matching +
Nondeterminism + …

ECAI'14

power_set([]) = [[]].
power_set([H|T]) = P1++P2 =>

P1 = power_set(T),
P2 = [[H|S] : S in P1].

perm([]) = [[]].
perm(Lst) = [[E|P] : E in Lst, P in perm(Lst.delete(E))].

matrix_multi(A,B) = C =>
C = new_array(A.length,B[1].length),
foreach(I in 1..A.length, J in 1..B[1].length)

C[I,J] = sum([A[I,K]*B[K,J] : K in 1..A[1].length])
end.

Tabling for Planning, N.F. Zhou

Outline of Tutorial

 An overview of Picat [20m]
 Tabling in Picat [10m]
 Planning with Picat [50m]

 The planner module of Picat
 Modeling techniques
 Modeling examples

 Summary

13ECAI'14 Tabling for Planning, N.F. Zhou

Tabling
for Dynamic Programming

 The idea [Michie68,Tamaki&Sato86,Warren92]
 Tabling memorizes calls and their answers in order to

prevent infinite loops and to limit redundancy

 Tabling is exciting
 Computers have more and more memory
 Advanced implementation techniques have improved the

scalability

 Tabling approaches
 Suspension-based tabling and linear tabling

14ECAI'14 Tabling for Planning, N.F. Zhou

15

Tabling-All

ECAI'14

table
reach(X,Y) ?=> edge(X,Y).
reach(X,Y) => reach(X,Z),edge(Z,Y).

table
fib(0)=1.
fib(1)=1.
fib(N)=fib(N-1)+fib(N-2).

Tabling for Planning, N.F. Zhou

Mode-directed Tabling in Picat

 Table modes
 + (input), - (output), min, max, nt (not-tabled)

 Semantics
 Table the best answer for each tuple of input arguments

 Linear tabling
 Iteratively evaluate looping calls until the optimum is reached

16ECAI'14

table(+,+,-,min)
shortest_path(X,Y,Path,W) ?=>

Path = [(X,Y)],
edge(X,Y,W),

shortest_path(X,Y,Path,W) =>
Path = [(X,Z)|PathR],
edge(X,Z,W1),
shortest_path(Z,Y,PathR,W2),
W = W1+W2.

Tabling for Planning, N.F. Zhou

The Omelet Problem
(Or The N-Eggs Problem)

17ECAI'14

http://www.datagenetics.com/blog/july22012/

table (+,+,min)
omelet(_,0,NTries) => NTries=0.
omelet(_,1,NTries) => NTries=1.
omelet(1,H,NTries) => NTries=H.
omelet(N,H,NTries) =>

between(1,H,L), % make a choice
omelet(N-1,L-1,NTries1), % the egg breaks
omelet(N,H-L,NTries2), % the egg survives
NTries is max(NTries1,NTries2)+1.

Tabling for Planning, N.F. Zhou

Linear Tabling

Tabling for Planning, N.F. Zhou 18ECAI'14

A...

A’...

...

pioneer

follower

table

A’, a variant of A, fails.
A needs to be re-evaluated in some cases.

Term Sharing
(Hash-consing)

Tabling for Planning, N.F. Zhou 19ECAI'14

[1|.]

[2| .]

[3| .]

Hashtable

[1,2,3]
[2,3]
[3]

Hash codes are tabled, so it’s fast
to test if two states are the same.

Tabled Planning

20ECAI'14

table (+,-,min)
plan(S,Plan,Cost),final(S) => Plan=[],Cost=0.
plan(S,Plan,Cost) =>

action(S,S1,Action,ActionCost),
plan(S1,Plan1,Cost1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

 With tabling, state-space tree search becomes
state-space graph search

 Depth-unbounded search

Tabling for Planning, N.F. Zhou

Tabled Planning
Depth-bounded Search

21ECAI'14

table (+,-,min,+)
plan(S,Plan,Cost,Limit),final(S) => Plan=[],Cost=0.
plan(S,Plan,Cost,Limit) =>

action(S,S1,Action,ActionCost),
Limit1 = Limit-ActionCost,
Limit1 >= 0,
plan(S1,Plan1,Cost1,Limit1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

 Pass the resource limit as an input argument
 Calls with the same state and different resource limits are

no longer variants

Tabling for Planning, N.F. Zhou

Tabled Planning
Depth-bounded Search

22ECAI'14

table (+,-,min,nt)
plan(S,Plan,Cost,Limit),final(S) => Plan=[],Cost=0.
plan(S,Plan,Cost,Limit) =>

action(S,S1,Action,ActionCost),
Limit1 = Limit-ActionCost,
Limit1 >= 0,
plan(S1,Plan1,Cost1,Limit1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

 Pass the resource limit as an nt argument
 Once a call is completed with a failure, it will fail forever, no

matter how big the resource limit is.
 Soundness and completeness are not guaranteed.

Tabling for Planning, N.F. Zhou

Resource-Bounded Search

23ECAI'14

SR is the current node, where S is the state and R is the resource limit.
SR’ failed before. SR can be failed immediately if R ≤ R’.

 Special treatment of the resource limit argument
 It is tabled but not used in variant checking

Tabling for Planning, N.F. Zhou

Outline of Tutorial

 An overview of Picat [20m]
 Tabling in Picat [10m]
 Planning with Picat [50m]

 The planner module of Picat
 Modeling techniques
 Modeling examples

 Summary

24ECAI'14 Tabling for Planning, N.F. Zhou

Classical Planning

 P = (S,,f,,s0,F)
 S : A set of states (finite or countably infinite)
  : A set of actions
 f : A transition function or relation (S  S)
  : A cost function (S  )
 s0 : An initial state
 F : A set of goal states

Tabling for Planning, N.F. Zhou 25ECAI'14

Planning Formalisms

 Logic programming
 PLANNER [Hewitt69], “a language for proving theorems

and manipulating models in a robot”
 Prolog for planning [Kowalski79,Warplan76]
 ASP-based planners [Lifschitz02]

 STRIPS-based PDDL
 The de facto language [McDermott98]
 Many solvers (Arvand, LAMA, FD, SymBA*-2,…)
 Extensions of PDDL (e.g., HTN)

 Planning as SAT and model checking
26ECAI'14 Tabling for Planning, N.F. Zhou

Planning With Picat

 A logic programming approach
 Unlike PDDL and ASP, structured data can be used.
 Domain-specific heuristics and control knowledge about

determinism, dependency, and symmetry can be encoded.

 Tabled backtracking search
 Every state generated during search is tabled.

 Same idea as state-marking used in IDA* and other algorithms.

 Term sharing: common ground terms are tabled only once.
 Alleviate the state explosion problem.

 Resource-bounded search
 Unlike IDA*, results from previous rounds are reused.

Tabling for Planning, N.F. Zhou 27ECAI'14

Picat’s planner Module
 Resource-bounded search

 plan(State,Limit,Plan,PlanCost)
 best_plan(State,Limit,Plan,PlanCost)

 Iterative deepening (unlike IDA*, results from early rounds are reused)
 current_resource()

 current_plan()

 Depth-unbounded search
 plan_unbounded(State,Limit,Plan,PlanCost)
 best_plan_unbounded(State,Limit,Plan,PlanCost)

 Like Dijkstra’s algorithm

28ECAI'14 Tabling for Planning, N.F. Zhou

How to Use the Planner?
 Import the planner module
 Specify the goal states

 final(State)
 True if State is a goal state.

 final(State,Plan,Cost)
 True if a goal state can be reached from State by Plan with Cost.

 Specify the actions
 action(State,NextState,Action,ActionCost)

 Encodes the state transition relation
 States are tabled, and destructive updates of states (using :=) are banned.

 Call a built-in on an initial state to find a plan
Tabling for Planning, N.F. Zhou 29ECAI'14

Ex: The Farmer’s Problem

30ECAI'14

import planner.

go =>
S0=[s,s,s,s],
best_plan(S0,Plan),
writeln(Plan).

final([n,n,n,n]) => true.

action([F,F,G,C],S1,Action,ActionCost) ?=>
Action=farmer_wolf,
ActionCost = 1,
opposite(F,F1),
S1=[F1,F1,G,C],
not unsafe(S1).

…

Tabling for Planning, N.F. Zhou

Modeling Techniques

 Find a good representation for states
 Keep the information minimal.
 Use good data structures that facilitate

 sharing
 computation of heuristics
 symmetry breaking

 Use heuristics and domain knowledge
 A state should not be expanded if the travel from it to the

final state costs more than the limit .
 Identify deterministic actions and macro actions.
 Use landmarks.

31ECAI'14 Tabling for Planning, N.F. Zhou

Modeling Examples
picat-lang.org/projects.html

32ECAI'14

15-puzzle RushHour

Logistics

Ricochet Robots

Rubik’s Cube Tower-of-Hanoi

Tabling for Planning, N.F. Zhou

Gilbreath’s card trick

Sokoban

Setting for the Experiments
 Linux
 CPU 4-core AMD II X4 945
 8GM RAM
 Timeout was set to 15 minutes per instance

Tabling for Planning, N.F. Zhou 33ECAI'14

15-Puzzle

 State representation

 The goal state

Tabling for Planning, N.F. Zhou 34ECAI'14

State = {SpaceLoc,CurTiles,GoalTiles},
SpaceLoc = [1|3],
CurTiles = [[4|1],[3|4],…],
GoalTiles= [[1|2],[1|3],…]

final({[1|1],Tiles,Tiles}) => true.

Use a cons to represent a location.
A cons [Row|Col] consumes 2 words,
and a pair (Row,Col) consumes 3 words.

15-Puzzle

 Actions

Tabling for Planning, N.F. Zhou 35ECAI'14

action({P0@[R0|C0],Tiles,GTiles},NextS,Move,Cost) ?=>
R1 = R0-1,
R1 >= 1,
Move = up,
Cost = 1,
P1 = [R1|C0],
update(Tiles,P0,P1,NTiles),
manhattan_distance(NTiles,GTiles) < current_resource(),
NextS={P1,NTiles,GTiles}.

…

NOTE: Tabled data cannot be destructively updated using the := operator!

15-Puzzle

 Experimental Results
 15 instances from ASP’09 that require 30-45 steps were

used.
 Picat solved all 15 instances in less than 1s per instance.

 The Manhattan distance heuristic is important.

 Prolog using the same heuristic is over 100 times slower
than Picat
 Tabling is important.

 Potassco (Clasp) failed to solve 5 of the 15 instances.

Tabling for Planning, N.F. Zhou 36ECAI'14

Rush Hour Puzzle

Tabling for Planning, N.F. Zhou 37ECAI'14

Move the red car to the exit (4,2).

Rush Hour Puzzle

 State representation

 L11 -- an ordered list of locations of the spaces.
 Lwh -- an ordered list of locations of the wh cars.
 Symmetries are removed.

 Goal states

Tabling for Planning, N.F. Zhou 38ECAI'14

{RedLoc,L11,L12,L21,L13,L31}

final({[4|2],_,_,_,_,_}) => true.

Rush Hour Puzzle

 Actions

Tabling for Planning, N.F. Zhou 39ECAI'14

% move the red car
action({LocRed,L11,L12,L21,L13,L31},NewS,Action,Cost) ?=>

Cost=1,
move_car(2,1,LocRed,NLocRed,L11,NL11,Action),
NewS = {NLocRed,NL11,L12,L21,L13,L31}.

% move a 1*2 car
action({LocRed,L11,L12,L21,L13,L31},NewS,Action,Cost) ?=>

Cost=1,
select(Loc,L12,L12R),
move_car(1,2,Loc,NLoc,L11,NL11,Action),
NL12 = L12R.insert_ordered(NLoc),
NewS = {LocRed,NL11,NL12,L21,L13,L31}.

…

Rush Hour Puzzle

 Experimental Results
 Picat found a best plan of 81 steps in 2s (explored 30493

states)
 ProB, with breadth-first search, took about the same

amount of time to find a best plan.

Tabling for Planning, N.F. Zhou 40ECAI'14

Sokoban

41ECAI'14

source: takaken

In the ASP’13 version,
there may be more stones
than goal locations. This makes
reversed solving difficult.

Tabling for Planning, N.F. Zhou

Sokoban

 State representation
 {SoLoc,GStLocs,NonGStLocs}

 SoLoc – the location of the man.
 GStLocs – an ordered list of locations of the goal stones.
 NonGStLocs – an ordered list of locations of the non-goal stones.

 Goal states

42ECAI'14

final({_,GStLocs,_}) =>
foreach(Loc in GStLocs)

goal(Loc)
end.

Tabling for Planning, N.F. Zhou

Sokoban

 Actions

43ECAI'14

% push a goal stone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) ?=>

NextState = {NewSoLoc,NewGStLocs,NonGStLocs},
Action = $move_push(SoLoc,StLoc,StDest,Dir),
Cost = 1,
choose_goal_stone(Dir,SoLoc,NewSoLoc,GStLocs,StLoc,

StDest,GStLocs1,NonGStLocs),
NewGStLocs = insert_ordered(GStLocs1,StDest).

% push a non-goal stone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) ?=>

…
% Sokoban moves alone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) =>

…

Tabling for Planning, N.F. Zhou

Sokoban

 Experimental Results
 30 instances from ASP’13 were used.
 Picat (using plan_unbounded) solved all the 30

instances (on average less than 1s per instance).
 Depth-unbounded search is faster than depth-

bounded search.
 Potassco solved only 14 of the 30 instances.
 Not as competitive as Rolling Stone, a specialized

Sokoban planner.

44ECAI'14 Tabling for Planning, N.F. Zhou

Ricochet Robots

45ECAI'14

source:Martin Gebser et al.

Tabling for Planning, N.F. Zhou

Ricochet Robots

 State representation

 Goal states

46ECAI'14

{[CurLoc|TargetLoc],ORobotLocs}

final({[Loc|Loc],_}) => true.

Tabling for Planning, N.F. Zhou

{[(1,1)|(2,5)],[(1,8),(8,1),(8,8)]}

Non-target robots are represented
as an ordered list of locations. This
representation breaks symmetries.

Ricochet Robots

 Actions

Tabling for Planning, N.F. Zhou 47ECAI'14

action({[From|To],ORobotLocs},NextState,Action,Cost) ?=>
NextState = {[Stop|To],ORobotLocs},
Action = [From|Stop], Cost = 1,
choose_move_dest(From,ORobotLocs,Stop).

action({FromTo@[From|_],ORobotLocs},NextState,Action,Cost) =>
NextState = {FromTo,ORobotLocs2},
Action = [RFrom|RTo], Cost = 1,
select(RFrom, ORobotLocs,ORobotLocs1),
choose_move_dest(RFrom,[From|ORobotLocs1],RTo),
ORobotLocs2 = insert_ordered(ORobotLocs1,RTo).

Ricochet Robots

48ECAI'14

action({[From|To],ORobotLocs},NextState,Action,Cost) ?=>
NextState = {[Stop|To],ORobotLocs},
Action = [From|Stop], Cost = 1,
choose_move_dest(From,ORobotLocs,Stop),
current_resource() > heuristic_val(NextState).

action({FromTo@[From|_],ORobotLocs},NextState,Action,Cost) =>
NextState = {FromTo,ORobotLocs2},
Action = [RFrom|RTo], Cost = 1,
select(RFrom, ORobotLocs,ORobotLocs1),
choose_move_dest(RFrom,[From|ORobotLocs1],RTo),
ORobotLocs2 = insert_ordered(ORobotLocs1,RTo),
current_resource() > heuristic_val(NextState).

 Use heuristics

 The current state is at least three steps away from the final state if the target
robot is not in the same row or the same column, and the target position has
no obstacle around it.

Tabling for Planning, N.F. Zhou

Ricochet Robots

 Experimental results
 30 instances of 1616 used in ASP’13 were used.
 Picat solved all 30 instances

 On average 9s per instance when no heuristic was used.
 On average 2s per instance when the heuristic was used.

 Prolog struggles on 55 instances.
 Tabling is important.

 Potassco also solved all 30 instances
 On average 49s per instance.

Tabling for Planning, N.F. Zhou 49ECAI'14

Logistics

 IPC domains
 Nomystery
 Airport pickup
 Drivelog
 Elevator planning
 Petrobrass planning
 …

Tabling for Planning, N.F. Zhou 50ECAI'14

Nomystery

 There is only one truck involved.
 The truck has a fuel level.
 A number of packages need to be transported

between nodes in a graph.
 The graph is weighted and the weight of an

edge is the fuel cost.

Tabling for Planning, N.F. Zhou 51ECAI'14

Nomystery
 State representation
 {TruckLoc,LCGs,WCGs}

 LCGs – an ordered list of destinations of loaded cargoes
 WCGs – an ordered list of source-destination pairs of waiting

cargoes

 Goal states

52ECAI'14

final({_,[],[]}) => true.

Tabling for Planning, N.F. Zhou

Nomystery

 Actions

Tabling for Planning, N.F. Zhou 53ECAI'14

action({Loc,LCGs,WCGs},NextState,Action,Cost),
select(Loc,LCGs,LCGs1)

=>
Action = $unload(Loc),
Cost = 0,
NextState= {Loc,LCGs1,WCGs}.

action({Loc,LCGs,WCGs},NextState,Action,Cost),
select([Loc|CargoDest],WCGs,WCGs1)

=>
Action = $load(Loc,CargoDest),
Cost = 0,
NextState = {Loc,LCGs1,WCGs1},
LCGs1 = insert_ordered(LCGs,CargoDest).

action({Loc,LCGs,WCGs},NextState,Action,Cost) =>
Action = $drive(Loc,Loc1),
NextState = {Loc1,LCGs,WCGs},
fuelcost(Cost,Loc,Loc1).

 Domain knowledge
 If the truck is at the destination of

a loaded cargo, then unload it
deterministically.

 If the truck is at a location where
there is a cargo that needs to be
delivered, then load it
deterministically.

Nomystery

 Experimental results
 30 instances from ASP’13 were used.
 Picat solved all the 30 instances.

 On average less than 0.1s per instance.

 Potassco solved only 17 of the 30 instances.
 Picat solved all the instances used in IPC’11, including the hardest

instance that was not solved by any of the participating solvers.

Tabling for Planning, N.F. Zhou 54ECAI'14

Gilbreath’s Card Trick

Tabling for Planning, N.F. Zhou 55ECAI'14

split

reverse deck-1

riffle-shuffle

Each quartet contains a card from each suit

Take from “Unraveling a Card Trick”, by Tony Hoare & Natarajan Shankar

Gilbreath’s Card Trick

 State representation

 Goal states

Tabling for Planning, N.F. Zhou 56ECAI'14

init([s,h,c,d,s,h,c,d,s,h,c,d])

splitted(Deck1,Deck2)

shuffled(Cards)

final(shuffled([C1,C2,C3,C4,C5,C6,C7,C8|_])) =>
Suites = [c,d,h,s],
(sort([C1,C2,C3,C4]) !== Suites

;
sort([C5,C6,C7,C8]) !== Suites

).

Gilbreath’s Card Trick

Tabling for Planning, N.F. Zhou 57ECAI'14

action(init(Cards),NewS,Action,ActionCost) =>
NewS = $splitted(Deck1,RDeck2),
Action = split,
ActionCost = 1,
append(Deck1,Deck2,Cards),
Deck1 !== [],
Deck2 !== [],
RDeck2 = Deck2.reverse().

action(splitted(Deck1,Deck2),NewS,Action,ActionCost) =>
NewS = $shuffled(Cards),
Action = shuffle,
ActionCost = 1,
shuffle(Deck1,Deck2,Cards).

 Actions

Gilbreath’s Card Trick

Tabling for Planning, N.F. Zhou 58ECAI'14

#Cards #States Time
16 13,840 0.08s
20 165,908 1.43s
24 1,990,680 34.22s

 Experimental results

Rubik’s Cube

Tabling for Planning, N.F. Zhou 59ECAI'14

12!212 8! 38 = 43,252,003,274,489,856,000
43 quintillion possible states!

8! 37 = 88,179,840

Rubik’s Cube

 State representation

 The goal state

Tabling for Planning, N.F. Zhou 60ECAI'14

pieces(Es,Cs)
Es : A list of positions of edge pieces.

Edge positions: [bd,db,…,ru,ur].
Cs : A list of positions of corner pieces.

Corner positions: [bdl,bld,…,ufr,urf]

final(pieces(Es,Cs)) =>
Es = [bd,bl,br,bu,df,dl,dr,fl,fr,fu,lu,ru],
Cs = [bdl,bdr,blu,bru,dfl,dfr,flu,fru].

Rubik’s Cube

 Expand the goal state into a goal region

Tabling for Planning, N.F. Zhou 61ECAI'14

From Richard E. Korf’97

final(S,Plan,Cost) =>
M = get_table_map(),
M.get(S,[]) = (Plan,Cost).

Rubik’s Cube

 Actions

 Some domain knowledge
 Do not turn one face consecutively.
 Do not turn opposite faces consecutively.

Tabling for Planning, N.F. Zhou 62ECAI'14

action(S,NewS,Action,Cost) =>
current_resource_plan_cost(Limit,CurPlan,_CurPlanLen),
actions(Actions),
Cost = 1,
member(Action,Actions),
not nogood_action(CurPlan,Action),
transform(Action,S,NewS).

Rubik’s Cube

 Experimental results
 222

 Out-of-memory for table area if no goal region is used.
 When the goal is expanded backward by 5 steps, Picat solves most

instances in seconds.

 333
 Picat can solve only easy instances that require up to 14 steps.
 Hard instances normally require 18 steps (in theory, no more than

20 steps).
 Korf’s pattern database is too big to store in the table area.

Tabling for Planning, N.F. Zhou 63ECAI'14

64

Hanoi Tower (4 Pegs)

Two snapshots from the sequence
of the Frame-Stewart algorithm

A B C DA B C D

Tabling for Planning, N.F. ZhouECAI'14

Hanoi Tower (4 Pegs)

 Remove correctly-positioned largest disks

Tabling for Planning, N.F. Zhou 65ECAI'14

A B C D A B C D

Hanoi Tower (4 Pegs)

Tabling for Planning, N.F. Zhou 66ECAI'14

Set up a landmark

A B C D A B C D

A B C D A B C D

Sub-prob-1

Sub-prob-2

Hanoi Tower (4 Pegs)

 State representation

Tabling for Planning, N.F. Zhou 67ECAI'14

{N,CurTower,GoalTower}
CurTower = [CPeg1,CPeg2,CPeg3,CPeg4]
GoalTower = [GPeg1,GPeg2,GPeg3,GPeg4]

Pegi = [D1,D2,…,Dk], D1 > D2 > … > Dk

Hanoi Tower (4 Pegs)

Tabling for Planning, N.F. Zhou 68ECAI'14

table (+,-,min)
hanoi4({0,_,_},Plan,Cost) => Plan=[],Cost=0.
% reduce the problem if the largest disk already is on the right peg
hanoi4({N,[[N|CPeg1]|CPegs],[[N|GPeg1]|GPegs]},Plan,Cost) =>

NewS = {N-1,[CPeg1|CPegs],[GPeg1|GPegs]},
hanoi4(NewS,Plan,Cost).

…
hanoi4({1,CState,GState},Plan,Cost) =>

nth(From,CState,[_]),
nth(To,GState,[_]),
Plan = [$move(From,To)],
Cost = 1.

% divide the problem into sub-problems
hanoi4({N,CState,GState},Plan,Cost) =>

partition_disks(N,CState,GState,ItState,M,Peg), % set up a landmark
remove_larger_disks(CState,M) = CState1,
hanoi4({M,CState1,ItState},Plan1,Cost1), % sub-problem1
remove_smaller_or_equal_disks(CState,M) = CState2,
remove_smaller_or_equal_disks(GState,M) = GState2,
N1 is N-M,
hanoi3({N1,CState2,GState2,Peg},Plan2,Cost2), % sub-problem2, 3-peg version
remove_larger_disks(GState,M) = GState1,
hanoi4({M,ItState,GState1},Plan3,Cost3), % sub-problem3
Plan = Plan1 ++ Plan2 ++ Plan3,
Cost = Cost1 + Cost2 + Cost3.

Hanoi Tower (4 Pegs)

 Experimental results
 15 instances from ASP’11 were used
 Picat solved all

 In less than 0.1s when no partition heuristic was used.
 Is even faster if a partition heuristic is used.

 Clasp also solved all 15 instances
 On average 20s per instance

Tabling for Planning, N.F. Zhou 69ECAI'14

Summary
Modeling Techniques

 Use an ordered list to represent positions
 Rush Hour, Sokoban, Ricochet Robots, and Nomystery.
 Breaks symmetry and facilitates sharing

 Use heuristics (15-puzzle and Ricochet)
 Identify deterministic actions (Nomystery)
 Goal expansion (Rubik’s cube)
 Use landmarks (4-peg Hanoi Tower)

Tabling for Planning, N.F. Zhou 70ECAI'14

Summary
Picat Vs. PDDL&ASP

 Picat
 Structures can be used to represent states
 Tabled state-space search (based on IDA* but different)
 Rely on programmers to encode domain knowledge

 Heuristics, control, determinism, dependency, and symmetry

 PDDL&ASP
 States are represented as propositional facts
 Various kinds of algorithms for PDDL and SAT for ASP
 Rely on the solver to learn domain knowledge

Tabling for Planning, N.F. Zhou 71ECAI'14

References
 R. Barták and N.F. Zhou, Using Tabled Logic Programming to Solve the

Petrobras Planning Problem, TPLP 2014.

 Håkan Kjellerstrand, Picat: A Logic-based Multi-paradigm Language,
ALP Newsletter, 2014.

 N.F. Zhou, Combinatorial Search With Picat, ICLP 2014.

 N.F. Zhou and A. Dovier, A Tabled Prolog Program for Solving
Sokoban, Fundamenta Informaticae, 2013.

 N.F. Zhou and J. Fruhman: Toward a Dynamic Programming Solution
for the 4-peg Tower of Hanoi Problem with Configurations. CoRR
abs/1301.7673 (2013)

Tabling for Planning, N.F. Zhou 72ECAI'14

