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Outline of Tutorial

 An overview of Picat [20m]
 Tabling in Picat [10m]
 Planning with Picat [50m]

 The planner module of Picat
 Modeling techniques
 Modeling examples

 Summary
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An Overview of Picat
 Why the name “PICAT”?

 Pattern-matching, Imperative, Constraints, Actors, Tabling

 Core logic programming concepts (Prolog-like)
 Logic variables (arrays and maps are terms)
 Implicit pattern-matching and explicit unification
 Explicit non-determinism

 Language constructs for scripting
 Functions, loops, and list comprehension

 Modeling and solving
 CP, SAT, and MIP for constraint solving
 Tabling for dynamic programming and planning
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Logic Variables
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Picat> A = new_array(2,3), A[1,1] = 1, A[2,3] = 5
A = {{1, _3d4, _3d8}, {_3e0, _3e4, 5}}

Picat> M = new_map([alpha=1, beta=2]), M.get(alpha) = A
M = (map)[alpha = 1,beta = 2]
A = 1

Basic data types
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Pre-created Maps
(Picat has no assert/retract)

 Map = get_heap_map()
 Stored on the heap.
 Like a normal map, updates are undone on backtracking.

 Map = get_global_map()
 Stored in the global area.
 Updates are not undone on backtracking.

 Map = get_table_map()
 Stored in the table area; keys and values are hash-consed
 Updates are not undone on backtracking.
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Pattern Matching

 Pattern-matching rules
 Pattern-matching is adequate for many applications

 NLP, state-space search, …

 Pattern-matching rules are fully indexed
 Picat can be more scalable than Prolog

 Explicit unification (X=Y) is supported
 As-pattern
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Head, Cond  =>  Body.
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is_sorted([X|L@[Y|_]]) => X =< Y, is_sorted(L).



Explicit Non-determinism

 Explicit non-determinism
 Although non-determinism is helpful for many

computations, deterministic computations are the majority
 The cut operator is unneeded
 Use the once operator to remove choice points
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member(X,[Y|_]) ?=> X=Y.
member(X,[_|L]) => member(X,L).
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Functions

 Many logic languages support functions
 Curry, Erlang, Mozart-OZ,…

 Functions are easier to use than relations
 Function calls never fail (at least built-in functions)
 Function calls can be nested
 Directionality helps readability

 Special notation is needed for structures

ECAI'14

f(A1,…,An)=Exp, Cond  =>  Body.

fib(N)=1, N=<1 => true.
fib(N)=fib(N-1)+fib(N-2).

Picat> S = $student(mary,cs,3.8)
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Loops
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 Loops are convenient for scripting and
modeling purposes
 Lisp, Python, C#, Java, C++11, …

 Loops are compiled to tail-recursion

foreach(E1 in D1, Cond1 , . . ., En in Dn, Condn)
Goal

end
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Loops

 Scopes of variables in loops
 Variables that occur within a loop but not before in its outer scope

are local to each iteration
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p(A) =>
q(X),
foreach(I in 1 .. A.length)

A[I] = (X,Y,Y,_)
end.

ECAI'14

X is global, and Y is local.
The anonymous variable is always local.
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List Comprehension

 Convenient for constructing lists
 Supported by more than 30 languages, according to Wiki.

 Compiled to a foreach loop
 The assignment operator (:=) is used to accumulate values
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[T : E1 in D1, Cond1 , . . ., En in Dn, Condn]
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Picat = Python +
Pattern Matching +
Nondeterminism +  …
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power_set([]) = [[]].
power_set([H|T]) = P1++P2 =>

P1 = power_set(T),
P2 = [[H|S] : S in P1].

perm([]) = [[]].
perm(Lst) = [[E|P] : E in Lst, P in perm(Lst.delete(E))].

matrix_multi(A,B) = C =>
C = new_array(A.length,B[1].length),
foreach(I in 1..A.length, J in 1..B[1].length)

C[I,J] = sum([A[I,K]*B[K,J] : K in 1..A[1].length])
end.
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Outline of Tutorial

 An overview of Picat [20m]
 Tabling in Picat [10m]
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 The planner module of Picat
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 Modeling examples
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Tabling
for Dynamic Programming

 The idea [Michie68,Tamaki&Sato86,Warren92]
 Tabling memorizes calls and their answers in order to

prevent infinite loops and to limit redundancy

 Tabling is exciting
 Computers have more and more memory
 Advanced implementation techniques have improved the

scalability

 Tabling approaches
 Suspension-based tabling and linear tabling
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Tabling-All

ECAI'14

table
reach(X,Y) ?=> edge(X,Y).
reach(X,Y) => reach(X,Z),edge(Z,Y).

table
fib(0)=1.
fib(1)=1.
fib(N)=fib(N-1)+fib(N-2).
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Mode-directed Tabling in Picat

 Table modes
 + (input), - (output), min, max, nt (not-tabled)

 Semantics
 Table the best answer for each tuple of input arguments

 Linear tabling
 Iteratively evaluate looping calls until the optimum is reached
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table(+,+,-,min)
shortest_path(X,Y,Path,W) ?=>

Path = [(X,Y)],
edge(X,Y,W),

shortest_path(X,Y,Path,W) =>
Path = [(X,Z)|PathR],
edge(X,Z,W1),
shortest_path(Z,Y,PathR,W2),
W = W1+W2.
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The Omelet Problem
(Or The N-Eggs Problem)
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http://www.datagenetics.com/blog/july22012/

table  (+,+,min)
omelet(_,0,NTries) => NTries=0.
omelet(_,1,NTries) => NTries=1.
omelet(1,H,NTries) => NTries=H.
omelet(N,H,NTries) =>

between(1,H,L),            % make a choice
omelet(N-1,L-1,NTries1),   % the egg breaks
omelet(N,H-L,NTries2),     % the egg survives
NTries is max(NTries1,NTries2)+1.
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Linear Tabling

Tabling for Planning, N.F. Zhou 18ECAI'14

A...

A’...

...

pioneer

follower

table

A’, a variant of A, fails.
A needs to be re-evaluated in some cases.



Term Sharing
(Hash-consing)
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[1|.]

[2| . ]

[3| . ]

Hashtable

[1,2,3]
[2,3]
[3]

Hash codes are tabled, so it’s fast
to test if two states are the same.



Tabled Planning
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table (+,-,min)
plan(S,Plan,Cost),final(S) => Plan=[],Cost=0.
plan(S,Plan,Cost) =>

action(S,S1,Action,ActionCost),
plan(S1,Plan1,Cost1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

 With tabling, state-space tree search becomes
state-space graph search

 Depth-unbounded search
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Tabled Planning
Depth-bounded Search

21ECAI'14

table (+,-,min,+)
plan(S,Plan,Cost,Limit),final(S) => Plan=[],Cost=0.
plan(S,Plan,Cost,Limit) =>

action(S,S1,Action,ActionCost),
Limit1 = Limit-ActionCost,
Limit1 >= 0,
plan(S1,Plan1,Cost1,Limit1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

 Pass the resource limit as an input argument
 Calls with the same state and different resource limits are

no longer variants
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Tabled Planning
Depth-bounded Search
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table (+,-,min,nt)
plan(S,Plan,Cost,Limit),final(S) => Plan=[],Cost=0.
plan(S,Plan,Cost,Limit) =>

action(S,S1,Action,ActionCost),
Limit1 = Limit-ActionCost,
Limit1 >= 0,
plan(S1,Plan1,Cost1,Limit1),
Plan = [Action|Plan1],
Cost = Cost1+ActionCost.

 Pass the resource limit as an nt argument
 Once a call is completed with a failure, it will fail forever, no

matter how big the resource limit is.
 Soundness and completeness are not guaranteed.
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Resource-Bounded Search
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SR is the current node, where S is the state and R is the resource limit.
SR’ failed before. SR can be failed immediately if R ≤ R’.

 Special treatment of the resource limit argument
 It is tabled but not used in variant checking
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Outline of Tutorial
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Classical Planning

 P = (S,,f,,s0,F)
 S : A set of states (finite or countably infinite)
  : A set of actions
 f : A transition function or relation (S  S)
  : A cost function (S  )
 s0 : An initial state
 F : A set of goal states
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Planning Formalisms

 Logic programming
 PLANNER [Hewitt69], “a language for proving theorems

and manipulating models in a robot”
 Prolog for planning [Kowalski79,Warplan76]
 ASP-based planners [Lifschitz02]

 STRIPS-based PDDL
 The de facto language [McDermott98]
 Many solvers (Arvand, LAMA, FD, SymBA*-2,…)
 Extensions of PDDL (e.g., HTN)

 Planning as SAT and model checking
26ECAI'14 Tabling for Planning, N.F. Zhou



Planning With Picat

 A logic programming approach
 Unlike PDDL and ASP, structured data can be used.
 Domain-specific heuristics and control knowledge about

determinism, dependency, and symmetry can be encoded.

 Tabled backtracking search
 Every state generated during search is tabled.

 Same idea as state-marking used in IDA* and other algorithms.

 Term sharing: common ground terms are tabled only once.
 Alleviate the state explosion problem.

 Resource-bounded search
 Unlike IDA*, results from previous rounds are reused.
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Picat’s planner Module
 Resource-bounded search

 plan(State,Limit,Plan,PlanCost)
 best_plan(State,Limit,Plan,PlanCost)

 Iterative deepening (unlike IDA*, results from early rounds are reused)
 current_resource()

 current_plan()

 Depth-unbounded search
 plan_unbounded(State,Limit,Plan,PlanCost)
 best_plan_unbounded(State,Limit,Plan,PlanCost)

 Like Dijkstra’s algorithm
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How to Use the Planner?
 Import the planner module
 Specify the goal states

 final(State)
 True if State is a goal state.

 final(State,Plan,Cost)
 True if a goal state can be reached from State by Plan with Cost.

 Specify the actions
 action(State,NextState,Action,ActionCost)

 Encodes the state transition relation
 States are tabled, and destructive updates of states (using :=) are banned.

 Call a built-in on an initial state to find a plan
Tabling for Planning, N.F. Zhou 29ECAI'14



Ex: The Farmer’s Problem
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import planner.

go =>
S0=[s,s,s,s],
best_plan(S0,Plan),
writeln(Plan).

final([n,n,n,n]) => true.

action([F,F,G,C],S1,Action,ActionCost) ?=>
Action=farmer_wolf,
ActionCost = 1,
opposite(F,F1),
S1=[F1,F1,G,C],
not unsafe(S1).

…
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Modeling Techniques

 Find a good representation for states
 Keep the information minimal.
 Use good data structures that facilitate

 sharing
 computation of heuristics
 symmetry breaking

 Use heuristics and domain knowledge
 A state should not be expanded if the travel from it to the

final state costs more than the limit .
 Identify deterministic actions and macro actions.
 Use landmarks.
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Modeling Examples
picat-lang.org/projects.html
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15-puzzle RushHour

Logistics

Ricochet Robots

Rubik’s Cube Tower-of-Hanoi

Tabling for Planning, N.F. Zhou

Gilbreath’s card trick

Sokoban



Setting for the Experiments
 Linux
 CPU 4-core AMD II X4 945
 8GM RAM
 Timeout was set to 15 minutes per instance
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15-Puzzle

 State representation

 The goal state
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State = {SpaceLoc,CurTiles,GoalTiles},
SpaceLoc = [1|3],
CurTiles = [[4|1],[3|4],…],
GoalTiles= [[1|2],[1|3],…]

final({[1|1],Tiles,Tiles}) => true.

Use a cons to represent a location.
A cons [Row|Col] consumes 2 words,
and a pair (Row,Col) consumes 3 words.



15-Puzzle

 Actions
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action({P0@[R0|C0],Tiles,GTiles},NextS,Move,Cost) ?=>
R1 = R0-1,
R1 >= 1,
Move = up,
Cost = 1,
P1 = [R1|C0],
update(Tiles,P0,P1,NTiles),
manhattan_distance(NTiles,GTiles) < current_resource(),
NextS={P1,NTiles,GTiles}.

…

NOTE: Tabled data cannot be destructively updated using the := operator!



15-Puzzle

 Experimental Results
 15 instances from ASP’09 that require 30-45 steps were

used.
 Picat solved all 15 instances in less than 1s per instance.

 The Manhattan distance heuristic is important.

 Prolog using the same heuristic is  over 100 times slower
than Picat
 Tabling is important.

 Potassco (Clasp) failed to solve 5 of the 15 instances.
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Rush Hour Puzzle
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Move the red car to the exit (4,2).



Rush Hour Puzzle

 State representation

 L11 -- an ordered list of locations of the spaces.
 Lwh -- an ordered list of locations of the wh cars.
 Symmetries are removed.

 Goal states
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{RedLoc,L11,L12,L21,L13,L31}

final({[4|2],_,_,_,_,_}) => true.



Rush Hour Puzzle

 Actions
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% move the red car
action({LocRed,L11,L12,L21,L13,L31},NewS,Action,Cost) ?=>

Cost=1,
move_car(2,1,LocRed,NLocRed,L11,NL11,Action),
NewS = {NLocRed,NL11,L12,L21,L13,L31}.

% move a 1*2 car
action({LocRed,L11,L12,L21,L13,L31},NewS,Action,Cost) ?=>

Cost=1,
select(Loc,L12,L12R),
move_car(1,2,Loc,NLoc,L11,NL11,Action),
NL12 = L12R.insert_ordered(NLoc),
NewS = {LocRed,NL11,NL12,L21,L13,L31}.

…



Rush Hour Puzzle

 Experimental Results
 Picat found a best plan of 81 steps in 2s (explored 30493

states)
 ProB, with breadth-first search, took about the same

amount of time to find a best plan.
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Sokoban

41ECAI'14

source: takaken

In the ASP’13 version,
there may be more stones
than goal locations. This makes
reversed solving difficult.
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Sokoban

 State representation
 {SoLoc,GStLocs,NonGStLocs}

 SoLoc – the location of the man.
 GStLocs – an ordered list of locations of the goal stones.
 NonGStLocs – an ordered list of locations of the non-goal stones.

 Goal states
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final({_,GStLocs,_}) =>
foreach(Loc in GStLocs)

goal(Loc)
end.
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Sokoban

 Actions
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% push a goal stone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) ?=>

NextState = {NewSoLoc,NewGStLocs,NonGStLocs},
Action = $move_push(SoLoc,StLoc,StDest,Dir),
Cost = 1,
choose_goal_stone(Dir,SoLoc,NewSoLoc,GStLocs,StLoc,

StDest,GStLocs1,NonGStLocs),
NewGStLocs = insert_ordered(GStLocs1,StDest).

% push a non-goal stone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) ?=>

…
% Sokoban moves alone
action({SoLoc,GStLocs,NonGStLocs},NextState,Action,Cost) =>

…
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Sokoban

 Experimental Results
 30 instances from ASP’13 were used.
 Picat (using plan_unbounded) solved all the 30

instances (on average less than 1s per instance).
 Depth-unbounded search is faster than depth-

bounded search.
 Potassco solved only 14 of the 30 instances.
 Not as competitive as Rolling Stone, a specialized

Sokoban planner.
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Ricochet Robots
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source:Martin Gebser et al.
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Ricochet Robots

 State representation

 Goal states
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{[CurLoc|TargetLoc],ORobotLocs}

final({[Loc|Loc],_}) => true.
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{[(1,1)|(2,5)],[(1,8),(8,1),(8,8)]}

Non-target robots are represented
as an ordered list of locations. This
representation breaks symmetries.



Ricochet Robots

 Actions
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action({[From|To],ORobotLocs},NextState,Action,Cost) ?=>
NextState = {[Stop|To],ORobotLocs},
Action = [From|Stop], Cost = 1,
choose_move_dest(From,ORobotLocs,Stop).

action({FromTo@[From|_],ORobotLocs},NextState,Action,Cost) =>
NextState = {FromTo,ORobotLocs2},
Action = [RFrom|RTo], Cost = 1,
select(RFrom, ORobotLocs,ORobotLocs1),
choose_move_dest(RFrom,[From|ORobotLocs1],RTo),
ORobotLocs2 = insert_ordered(ORobotLocs1,RTo).



Ricochet Robots
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action({[From|To],ORobotLocs},NextState,Action,Cost) ?=>
NextState = {[Stop|To],ORobotLocs},
Action = [From|Stop], Cost = 1,
choose_move_dest(From,ORobotLocs,Stop),
current_resource() > heuristic_val(NextState).

action({FromTo@[From|_],ORobotLocs},NextState,Action,Cost) =>
NextState = {FromTo,ORobotLocs2},
Action = [RFrom|RTo], Cost = 1,
select(RFrom, ORobotLocs,ORobotLocs1),
choose_move_dest(RFrom,[From|ORobotLocs1],RTo),
ORobotLocs2 = insert_ordered(ORobotLocs1,RTo),
current_resource() > heuristic_val(NextState).

 Use heuristics

 The current state is at least three steps away from the final state if the target
robot is not in the same row or the same column, and the target position has
no obstacle around it.
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Ricochet Robots

 Experimental results
 30 instances of 1616 used in ASP’13 were used.
 Picat solved all 30 instances

 On average 9s per instance when no heuristic was used.
 On average 2s per instance when the heuristic was used.

 Prolog struggles on 55 instances.
 Tabling is important.

 Potassco also solved all 30 instances
 On average 49s per instance.
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Logistics

 IPC domains
 Nomystery
 Airport pickup
 Drivelog
 Elevator planning
 Petrobrass planning
 …
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Nomystery

 There is only one truck involved.
 The truck has a fuel level.
 A number of packages need to be transported

between nodes in a graph.
 The graph is weighted and the weight of an

edge is the fuel cost.
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Nomystery
 State representation
 {TruckLoc,LCGs,WCGs}

 LCGs – an ordered list of destinations of loaded cargoes
 WCGs – an ordered list of source-destination pairs of waiting

cargoes

 Goal states
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final({_,[],[]}) => true.
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Nomystery

 Actions
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action({Loc,LCGs,WCGs},NextState,Action,Cost),
select(Loc,LCGs,LCGs1)

=>
Action = $unload(Loc),
Cost = 0,
NextState= {Loc,LCGs1,WCGs}.

action({Loc,LCGs,WCGs},NextState,Action,Cost),
select([Loc|CargoDest],WCGs,WCGs1)

=>
Action = $load(Loc,CargoDest),
Cost = 0,
NextState = {Loc,LCGs1,WCGs1},
LCGs1 = insert_ordered(LCGs,CargoDest).

action({Loc,LCGs,WCGs},NextState,Action,Cost) =>
Action = $drive(Loc,Loc1),
NextState = {Loc1,LCGs,WCGs},
fuelcost(Cost,Loc,Loc1).

 Domain knowledge
 If the truck is at the destination of

a loaded cargo, then unload it
deterministically.

 If the truck is at a location where
there is a cargo that needs to be
delivered, then load it
deterministically.



Nomystery

 Experimental results
 30 instances from ASP’13 were used.
 Picat solved all the 30 instances.

 On average less than 0.1s per instance.

 Potassco solved only 17 of the 30 instances.
 Picat solved all the instances used in IPC’11, including the hardest

instance that was not solved by any of the participating solvers.
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Gilbreath’s Card Trick
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split

reverse deck-1

riffle-shuffle

Each quartet contains a card from each suit

Take from “Unraveling a Card Trick”, by Tony Hoare & Natarajan Shankar



Gilbreath’s Card Trick

 State representation

 Goal states
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init([s,h,c,d,s,h,c,d,s,h,c,d])

splitted(Deck1,Deck2)

shuffled(Cards)

final(shuffled([C1,C2,C3,C4,C5,C6,C7,C8|_])) =>
Suites = [c,d,h,s],
(  sort([C1,C2,C3,C4]) !== Suites

;
sort([C5,C6,C7,C8]) !== Suites

).



Gilbreath’s Card Trick
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action(init(Cards),NewS,Action,ActionCost) =>
NewS = $splitted(Deck1,RDeck2),
Action = split,
ActionCost = 1,
append(Deck1,Deck2,Cards),
Deck1 !== [],
Deck2 !== [],
RDeck2 = Deck2.reverse().

action(splitted(Deck1,Deck2),NewS,Action,ActionCost) =>
NewS = $shuffled(Cards),
Action = shuffle,
ActionCost = 1,
shuffle(Deck1,Deck2,Cards).

 Actions



Gilbreath’s Card Trick
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#Cards #States Time
16 13,840 0.08s
20 165,908 1.43s
24 1,990,680 34.22s

 Experimental results



Rubik’s Cube
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12!212 8! 38 = 43,252,003,274,489,856,000
43 quintillion possible states!

8! 37 = 88,179,840



Rubik’s Cube

 State representation

 The goal state
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pieces(Es,Cs)
Es : A list of positions of edge pieces.

Edge positions: [bd,db,…,ru,ur].
Cs : A list of positions of corner pieces.

Corner positions: [bdl,bld,…,ufr,urf]

final(pieces(Es,Cs)) =>
Es = [bd,bl,br,bu,df,dl,dr,fl,fr,fu,lu,ru],
Cs = [bdl,bdr,blu,bru,dfl,dfr,flu,fru].



Rubik’s Cube

 Expand the goal state into a goal region
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From Richard E. Korf’97

final(S,Plan,Cost) =>
M = get_table_map(),
M.get(S,[]) = (Plan,Cost).



Rubik’s Cube

 Actions

 Some domain knowledge
 Do not turn one face consecutively.
 Do not turn opposite faces consecutively.
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action(S,NewS,Action,Cost) =>
current_resource_plan_cost(Limit,CurPlan,_CurPlanLen),
actions(Actions),
Cost = 1,
member(Action,Actions),
not nogood_action(CurPlan,Action),
transform(Action,S,NewS).



Rubik’s Cube

 Experimental results
 222

 Out-of-memory for table area if no goal region is used.
 When the goal is expanded backward by 5 steps, Picat solves most

instances in seconds.

 333
 Picat can solve only easy instances that require up to 14 steps.
 Hard instances normally require 18 steps (in theory, no more than

20 steps).
 Korf’s pattern database is too big to store in the table area.
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64

Hanoi Tower (4 Pegs)

Two snapshots from the sequence
of the Frame-Stewart algorithm

A                B                C                DA                  B                 C              D
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Hanoi Tower (4 Pegs)

 Remove correctly-positioned largest disks
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A                B               C              D A                B               C                D



Hanoi Tower (4 Pegs)
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Set up a landmark

A                B               C              D A                B               C              D

A                B               C              D A                B               C              D

Sub-prob-1

Sub-prob-2



Hanoi Tower (4 Pegs)

 State representation
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{N,CurTower,GoalTower}
CurTower = [CPeg1,CPeg2,CPeg3,CPeg4]
GoalTower = [GPeg1,GPeg2,GPeg3,GPeg4]

Pegi = [D1,D2,…,Dk], D1 > D2 > … > Dk



Hanoi Tower (4 Pegs)
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table (+,-,min)
hanoi4({0,_,_},Plan,Cost) => Plan=[],Cost=0.
% reduce the problem if the largest disk already is on the right peg
hanoi4({N,[[N|CPeg1]|CPegs],[[N|GPeg1]|GPegs]},Plan,Cost) =>

NewS = {N-1,[CPeg1|CPegs],[GPeg1|GPegs]},
hanoi4(NewS,Plan,Cost).

…
hanoi4({1,CState,GState},Plan,Cost) =>

nth(From,CState,[_]),
nth(To,GState,[_]),
Plan = [$move(From,To)],
Cost = 1.

% divide the problem into sub-problems
hanoi4({N,CState,GState},Plan,Cost) =>

partition_disks(N,CState,GState,ItState,M,Peg),    % set up a landmark
remove_larger_disks(CState,M) = CState1,
hanoi4({M,CState1,ItState},Plan1,Cost1), % sub-problem1
remove_smaller_or_equal_disks(CState,M) = CState2,
remove_smaller_or_equal_disks(GState,M) = GState2,
N1 is N-M,
hanoi3({N1,CState2,GState2,Peg},Plan2,Cost2), % sub-problem2, 3-peg version
remove_larger_disks(GState,M) = GState1,
hanoi4({M,ItState,GState1},Plan3,Cost3), % sub-problem3
Plan = Plan1 ++ Plan2 ++ Plan3,
Cost = Cost1 + Cost2 + Cost3.



Hanoi Tower (4 Pegs)

 Experimental results
 15 instances from ASP’11 were used
 Picat solved all

 In less than 0.1s when no partition heuristic was used.
 Is even faster if a partition heuristic is used.

 Clasp also solved all 15 instances
 On average 20s per instance
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Summary
Modeling Techniques

 Use an ordered list to represent positions
 Rush Hour, Sokoban, Ricochet Robots, and Nomystery.
 Breaks symmetry and facilitates sharing

 Use heuristics (15-puzzle and Ricochet)
 Identify deterministic actions (Nomystery)
 Goal expansion (Rubik’s cube)
 Use landmarks (4-peg Hanoi Tower)
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Summary
Picat Vs. PDDL&ASP

 Picat
 Structures can be used to represent states
 Tabled state-space search (based on IDA* but different)
 Rely on programmers to encode domain knowledge

 Heuristics, control, determinism, dependency, and symmetry

 PDDL&ASP
 States are represented as propositional facts
 Various kinds of algorithms for PDDL and SAT for ASP
 Rely on the solver to learn domain knowledge
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