
Picat: A Scalable Logic-based
Language and System

Neng-Fa Zhou and Jonathan Fruhman
The City University of New York

Copyright c©picat-lang.org, 2013.
Last updated April 9, 2013

Preface

Despite the elegant concepts, new extensions (e.g., tabling and constraints), and successful ap-
plications (e.g., knowledge engineering, NLP, and search problems), Prolog has a bad reputation
for being old and difficult. Many ordinary programmers find the implicit non-directionality and
non-determinism of Prolog to be hard to follow, and the non-logical features, such as cuts and dy-
namic predicates, are prone to misuses, leading to absurd codes. The lack of language constructs
and libraries for programming everyday things is also considered a big weakness of Prolog. The
backward compatibility requirement has made it hopeless to remedy the language issues in current
Prolog systems, and there are urgent calls for a new language.

Several successors of Prolog have been designed, including Mercury, Erlang, Oz, and Curry.
The requirement of many kinds of declarations in Mercury has made the language difficult to
use; Erlang’s abandonment of non-determinism in favor of concurrency has made the language
unsuited for many applications despite its success in the telecom industry; Oz has never attained
the popularity that the designers sought, probably due to its unfamiliar syntax and implicit laziness;
Curry is considered too close to Haskell. All of these successors were designed in the 1990s, and
now the time is ripe for a new logic-based language.

This project aims to design and implement a simple, and yet powerful, logic-based program-
ming language, named Picat, for a variety of applications. Picat incorporates many declara-
tive language features for better productivity of software development, including explicit non-
determinism, explicit unification, functions, constraints, and tabling. Picat lacks Prolog’s non-
logical features, such as the cut operator and dynamic predicates, making Picat more reliable than
Prolog. Picat also provides imperative language constructs for programming everyday things. The
resulting system will be used for not only symbolic computations, which is a traditional applica-
tion domain of declarative languages, but also for scripting tasks for the Web, games, and mobile
applications.

Picat is a general-purpose language that incorporates features from logic programming, func-
tional programming, and scripting languages. The following Picat list of pairs tells the meanings
of the letters in the name.

[’P’=predicates, ’I’=imperative, ’C’=constraints, ’A’=actors, ’T’=tabling]

• Predicates: A predicate defines a relation, and can have zero, one, or multiple answers. A
function is a special kind of a predicate that always succeeds with one answer. Picat is a
rule-based language. Predicates and functions are defined with pattern-matching rules.

• Imperative: Picat incorporates features of imperative programming languages, which tell
the computer how to perform operations. Picat provides assignment and loop statements for
programming everyday things.

• Constraints: Picat supports constraint programming. Given a set of variables, each of which
has a domain of possible values, and a set of constraints that limit the acceptable set of
assignments of values to variables, the goal is to find an assignment of values to the variables
that satisfies all of the constraints.

• Actors: Actors are event-driven calls. Picat provides action rules for describing event-
driven behaviors of actors. Events are posted through channels. An actor can be attached to
a channel in order to watch and to process its events. Picat treats threads as channels, and
allows the use of action rules to program concurrent threads.

• Tabling: Tabling can be used to store the results of certain calculations in memory, allow-
ing the program to do a quick table lookup instead of repeatedly calculating a value. As

i

computer memory grows, tabling is becoming increasingly important for offering dynamic
programming solutions for many problems.

In addition to these language features, the Picat system also provides external interfaces with
other language and database systems, and a rich set of library modules including threads, sockets,
and Web services.

ii

Contents

1 Overview 1
1.1 Data Types . 1
1.2 Defining Predicates . 4
1.3 Defining Functions . 6
1.4 Assignments and Loops . 7
1.5 Tabling . 9
1.6 Modules . 10
1.7 Constraints . 11
1.8 Exceptions . 12
1.9 Higher-Order Calls . 13
1.10 Action Rules and Threads . 14
1.11 Global Maps . 15
1.12 External Language Interfaces and Libraries . 16
1.13 Resources . 16
1.14 Programming Exercises . 17

2 How to Use the Picat System 18
2.1 How to Use the Picat Interpreter . 18

2.1.1 How to Enter and Quit the Picat Interpreter 19
2.1.2 How to Use the Command-line Editor 19
2.1.3 How to Compile and Load Programs . 19
2.1.4 How to Run Programs . 20

2.2 How to Use the Debugger . 20
2.3 How to Use the picate and picatc Commands 22
2.4 How to Use the Profiler . 23

3 Data Types, Operators, and Built-ins 24
3.1 Variables . 24
3.2 Atoms . 26
3.3 Numbers . 27
3.4 Compound Terms . 28
3.5 Equality Testing and Unification . 32
3.6 Expressions . 32
3.7 Basic I/O . 33
3.8 Other Built-ins on Terms . 34

iii

4 Predicates and Functions 36
4.1 Predicates . 36
4.2 Functions . 37
4.3 Patterns and Pattern-Matching . 38
4.4 Goals . 38
4.5 Predicate Facts . 40
4.6 Tail Recursion . 41

5 Assignments and Loops 42
5.1 Assignments . 42

5.1.1 If-Else . 42
5.2 Types of Loops . 43

5.2.1 Foreach Loops . 43
5.2.2 Foreach Loops with Multiple Iterators 44
5.2.3 While Loops . 45
5.2.4 Do-while Loops . 46

5.3 List Comprehensions . 47
5.4 Compilation of Loops . 47

5.4.1 List Comprehensions . 49

6 Exceptions 51
6.1 Built-in Exceptions . 51
6.2 Throwing Exceptions . 52
6.3 Defining Exception Handlers . 52

7 Tabling 54
7.1 Table Declarations . 54
7.2 The Tabling Mechanism . 56
7.3 Primitives on Tables . 56

8 Modules 59
8.1 Module and Import Declarations . 59
8.2 Binding Calls to Definitions . 60
8.3 Accessing Attributes of Modules . 61
8.4 Binding Higher-Order Calls . 62
8.5 Library Modules . 62

9 I/O 63
9.1 Opening a File . 63
9.2 Reading from a File . 64

9.2.1 End of File . 65
9.3 Writing to a File . 66
9.4 Flushing and Closing a File . 67
9.5 Repositioning I/O Pointers Within Files . 68
9.6 Standard File Descriptors . 69
9.7 Redirection . 69
9.8 Temporary Files and Pipes . 71

9.8.1 Temporary Files . 71
9.8.2 Pipes . 71
9.8.3 A Note on Errors . 73

iv

10 The File System 74
10.1 The Path Parameter . 74
10.2 Directories . 74

10.2.1 The Current Working Directory . 75
10.3 Modifying Files and Directories . 75

10.3.1 Creation . 75
10.3.2 Modification . 76
10.3.3 Deletion . 77

10.4 Obtaining Information about Files . 77

11 Event-Driven Actors and Action Rules 80
11.1 Channels, Ports, and Events . 80
11.2 Action Rules . 81
11.3 Lazy Evaluation . 83
11.4 Constraint Propagators . 83
11.5 Timers and Time Events . 84

12 Threads 86
12.1 Starting and Terminating Threads . 86
12.2 Making Threads Wait . 87

12.2.1 Deadlock . 88
12.3 Mutual Exclusion . 88

12.3.1 Mutex Locks . 89
12.3.2 Semaphores . 91

12.4 Read-Write Locks . 92
12.5 Condition Variables . 94

13 Processes 97
13.1 Creating New Processes . 97
13.2 Executing Other Code . 98
13.3 Making Processes Wait . 99
13.4 Differences Between Processes and Threads . 100

14 Constraints 101
14.1 Domain Variables . 102
14.2 Table constraints . 103
14.3 Arithmetic Constraints . 104
14.4 Boolean Constraints . 105
14.5 Global Constraints . 106
14.6 Solver Invocation . 108

14.6.1 Common Solving Options . 109
14.6.2 Solving Options for cp . 109

15 Sockets 110
15.1 Connection-Oriented Communication . 110
15.2 Connectionless Communication . 114
15.3 Multicasting . 116
15.4 Communication on the Unix Domain . 118
15.5 Other Socket Functions and Predicates . 120

15.5.1 Socket Options . 120

v

15.5.2 Host Information . 121
15.5.3 Services . 122

16 External Language Interface with C 123
16.1 Calling C from Picat . 123

16.1.1 Term Representation . 123
16.1.2 Fetching Arguments of Picat Calls . 123
16.1.3 Testing Picat Terms . 123
16.1.4 Converting Picat Terms into C . 124
16.1.5 Manipulating and Writing Picat Terms 124
16.1.6 Building Picat Terms . 125
16.1.7 Registering Predicates that were Defined in C 125

16.2 Calling Picat from C . 126

A Appendix: Math 129
A.1 Constants . 129
A.2 Functions . 129

A.2.1 Sign and Absolute Value . 129
A.2.2 Rounding and Truncation . 130
A.2.3 Exponents, Roots, and Logarithms . 130
A.2.4 Converting Between Degrees and Radians 131
A.2.5 Trigonometric Functions . 131
A.2.6 Hyperbolic Functions . 132
A.2.7 Random Numbers . 133

B Appendix: Date and Time 134
B.1 Representing Date and Time . 134
B.2 Extracting Values . 134
B.3 Changing the Date and Time . 135

B.3.1 Adding . 135
B.3.2 Setting . 136

B.4 Converting to Strings . 136
B.5 Other Built-ins . 137

C Appendix: Lexical Grammar 138

D Appendix: Syntax Grammar 144

E Appendix: Formats 150
E.1 Formatted Printing . 150
E.2 Formatted Date and Time . 151

F Appendix: Socket Options 152

G Appendix: The Library Modules 154

vi

Chapter 1

Overview

Before we give an overview of the Picat language, let us briefly describe how to use the Picat
system. The Picat system provides an interactive programming environment for users to load,
debug, and execute programs. Users can start the Picat interpreter with the OS command picat.
Once the interpreter is started, users can type a command line after the prompt picat>. The
help command shows the usages of commands, and the halt command terminates the Picat
interpreter. The OS command picatc compiles a file (with extension name pi) and all of its
dependent files into bytecode files (with extension name qi), and the OS command picate
executes a Picat program as a standalone application.

1.1 Data Types

Picat is a dynamically-typed language, in which type checking occurs at runtime. A variable in
Picat is a value holder. A variable name is an identifier that begins with a capital letter or the
underscore. An attributed variable is a variable that has a map of attribute-value pairs attached to
it. A variable is free until it is bound to a value. A value in Picat can be primitive or compound.

A primitive value can be an integer, a real number, or an atom. A character can be represented
as a single-character atom. An atom name is an identifier that begins with a lower-case letter or a
single-quoted sequence of characters.

A compound value can be a list in the form [t1,. . .,tn] or a structure in the form $s(t1,. . .,tn)$
where s stands for a structure name, n is called the arity of the structure, and each ti (1 ≤ i ≤ n)
is a term which is a variable or a value. The two dollar symbols are used to distinguish a structure
from a function call. Strings, arrays, and maps are special compound values. A string is a list of
single-character atoms. An array takes the form {t1,. . .,tn}, which is a special structure with the
name ’{}’. A map is a hash-table represented as a structure that contains a set of key-value pairs.

The function new struct(Name, IntOrList) returns a structure. The function new map(S)
returns a map that initially contains the pairs in list S. The function new array(I1, I2, . . . , In)
returns an n-dimensional array, where each Ii is an integer expression specifying the size of a
dimension. An n-dimensional array is a one-dimensional array where the arguments are (n-1)-
dimensional arrays.

Example

picat> V1 = X1, V2 = _ab, V3 = _ % variables

picat> N1 = 12, N2 = 0xf3, N3 = 1e10 % numbers

1

picat> A1 = x1, A2 = ’_AB’, A3 = ’’ % atoms

picat> L = [a,b,c,d] % a list

picat> write("hello"++"picat") % strings
"hellopicat"

picat> print("hello"++"picat")
hellopicat

picat> writef("%s","hello"++"picat") % formatted write
hellopicat

picat> S = $point(1.0,2.0)$ % a structure

picat> S = new_struct(point,3) % create a structure
S = point(_3b0,_3b4,_3b8)

picat> A = {a,b,c,d} % an array

picat> A = new_array(3) % create an array
A = {_3b0,_3b4,_3b8}

picat> M = new_map(["one"=1,"two"=2]) % create a map
M = map(["one"=1,"two"=2])

picat> X = 1..2..10 % ranges
X = [1,3,5,7,9]

picat> X = 1..5
X = [1,2,3,4,5]

Picat allows function calls in arguments. For this reason, it requires structures to be enclosed
in a pair of dollar symbols in order for them to be treated as data. Without the dollar symbols,
the command S=point(1.0,2.0) would call the function point(1.0,2.0) and bind S
to its return value. In order to ensure safe interpretation of meta terms in higher-order calls,
Picat forbids the creation of terms that contain structures with the name ’.’, index notations,
list comprehensions, and loops.

For each type, Picat provides a set of built-in functions and predicates. The index notation
X[I], where X references a compound value and I is an integer expression, is a special function
that returns a single component of X . The index of the first element of a list or a structure is 1. In
order to facilitate type checking at compile time, Picat does not overload arithmetic operators for
other purposes, and requires an index expression to be an integer.

A list comprehension, which takes the following form, is a special functional notation for
creating lists:

[T : E1 in D1, Cond1, . . ., En in Dn, Condn]

where T is an expression, each Ei is an iterating pattern, each Di is an expression that gives
a compound value, and the optional conditions Cond1,. . .,Condn are callable terms. This list

2

comprehension means that for every combination of values E1 ∈ D1, . . ., En ∈ Dn, if the
conditions are true, then the value of T is added into the list.

The predicate put(X,Key, V al) attaches the key-value pair Key=V al to X , where X is
either a variable or a map, Key is a non-variable term, and V al is any term. An attributed variable
has a map attached to it. The function get(X,Key) returns V al of the key-value pair Key=V al
attached to X . The predicate has key(X,Key) returns true iff X contains a pair with the given
key.

Example

picat> integer(5)
yes

picat> real(5)
no

picat> var(X)
yes

picat> X=5, var(X)
no

picat> 5 != 2+2
yes

picat> X = to_binary_string(5)
X = [’1’,’0’,’1’]

picat> L = [a,b,c,d], X = L[2]
X = b

picat> L = [(A,I) : A in [a,b], I in 1..2].
L = [(a,1),(a,2),(b,1),(b,2)]

picat> put(X,one,1), One = get(X,one) % attributed variable
One = 1

picat> S = new_struct(point,3), Name = name(S), Len = length(S)
S = point(_3b0,_3b4,_3b8)
Name = point
Length = 3

picat> S = new_array(2,3), S[1,1] = 11, S[2,3] = 23, D2 = length(S[2])
S = {{11,_3d4,_3d8},{_3e0,_3e4,23}}
D2 = 3

picat> M = new_map(), put(M,"one",1), One = get(M,"one")
One = 1

Picat also allows OOP notations for accessing attributes and for calling predicates and func-

3

tions. The notation A1.f(A2, . . . , Ak) is the same as f(A1, A2, . . . , Ak), unless A1 is a module
name, in which case A1 is a module qualifier for f . The notation A.Attr is the same as the function
call get(A,Attr). A structure is assumed to have two attributes called name and length.

Example

picat> X = 5.to_binary_string()
X = [’1’,’0’,’1’]

picat> Len = [a,b,c,d].length()
Len = 4

picat> X.put(one,1), One = X.one
One = 1

picat> X = math.pi
X=3.14159

picat> S = new_struct(point,3), Name = S.name, Len = S.length
S = point(_3b0,_3b4,_3b8)
Name = point
Length = 3

picat> S = new_array(2,3), S[1,1] = 11, S[2,3] = 23, D2 = S[2].length
S = {{11,_3d4,_3d8},{_3e0,_3e4,23}}
D2 = 3

picat> M = new_map(), M.put("one",1), One = M.get("one")
One = 1

1.2 Defining Predicates

A predicate call either succeeds or fails, unless an exception occurs. A predicate call can return
multiple answers through backtracking. The built-in predicate true always succeeds, and the
built-in predicate fail always fails. A goal is made from predicate calls and statements, includ-
ing conjunction (A,B), disjunction (A;B), negation (not A), if-then-else, foreach loops, and
while loops.

A predicate is defined with pattern-matching rules. Picat has two types of rules: the non-
backtrackable rule Head,Cond => Body, and the backtrackable rule Head,Cond ?=> Body.
The Head takes the form p(t1, . . . , tn), where p is called the predicate name, and n is called the
arity. When n = 0, the parentheses can be omitted. The condition Cond, which is an optional
goal, specifies a condition under which the rule is applicable. For a call C, if C matches Head and
Cond succeeds, meaning that the condition evaluates to true, the rule is said to be applicable to C.
When applying a rule to call C, Picat rewrites C into Body. If the used rule is non-backtrackable,
then the rewriting is a commitment, and the program can never backtrack to C. If the used rule
is backtrackable, however, the program will backtrack to C once Body fails, meaning that Body
will be rewritten back to C, and the next applicable rule will be tried on C.

4

Example

fib(0,F) => F=1.
fib(1,F) => F=1.
fib(N,F),N>1 => fib(N-1,F1),fib(N-2,F2),F=F1+F2.
fib(N,F) => throw $error(wrong_argument,fib,N)$.

A call matches the head fib(0,F) if the first argument is 0. The second argument can
be anything. For example, for the call fib(0,2), the first rule is applied, since fib(0, 2)
matches its head. However, when the body is executed, the call 2=1 fails.

The predicate fib/2 can also be defined using if-then-else as follows:

fib(N,F) =>
if (N=0; N=1) then

F=1
elseif N>1 then

fib(N-1,F1),fib(N-2,F2),F=F1+F2
else

throw $error(wrong_argument,fib,N)$
end.

An if statement takes the form if Cond then Goal1 else Goal2 end. The then part
can contain one or more elseif clauses. The else part can be omitted. In that case the else
part is assumed to be else true. The built-in throw E throws term E as an exception.

Example

member(X,[Y|_]) ?=> X=Y.
member(X,[_|L]) => member(X,L).

The pattern [Y|_] matches any list. The backtrackable rule makes a call nondeterministic,
and the predicate can be used to retrieve elements from a list one at a time through backtracking.

picat> member(X,[1,2,3])
X=1;
X=2;
X=3;
no

After Picat returns an answer, users can type a semicolon immediately after the answer to ask for
the next answer. If users only want one answer to be returned from a call, they can use once
Call to stop backtracking.

The version of member that checks if a term occurs in a list can be defined as follows:

membchk(X,[X|_]) => true.
membchk(X,[_|L]) => membchk(X,L).

The first rule is applicable to a call if the second argument is a list and the first argument of the call
is identical to the first element of the list.

Picat allows inclusion of predicate facts in the form p(t1,. . .,tn) in predicate definitions.
Facts are translated into pattern-matching rules before they are compiled. A predicate definition
that consists of facts can be preceded by an index declaration in the form index (M11,M12, . . . ,M1n)
. . . (Mm1,Mm2, . . . ,Mmn) where each Mij is either + (meaning indexed) or − (meaning not
indexed). For each index pattern (Mi1,Mi2, . . . ,Min), the compiler generates a version of the
predicate that indexes all of the + arguments.

5

Example

index (+,-) (-,+)
edge(a,b).
edge(a,c).
edge(b,c).
edge(c,b).

For a predicate of indexed facts, a matching version of the predicate is selected for a call. If no
matching version is available, Picat throws an exception. For example, for the call edge(X,Y),
if both X and Y are free, then no version of the predicate matches this call and Picat throws an ex-
ception. If predicate facts are not preceded by any index declaration, then no argument is indexed.

1.3 Defining Functions

A function call always succeeds with a return value if no exception occurs. Functions are defined
with non-backtrackable rules in which the head is an equation F=X , where F is the function
pattern in the form f(t1, . . . , tn) and X holds the return value. When n = 0, the parentheses can
be omitted.

Example

fib(0)=F => F=1.
fib(1)=F => F=1.
fib(N)=F,N>1 => F=fib(N-1)+fib(N-2).

qsort([])=L => L=[].
qsort([H|T])=L => L = qsort([E : E in T, E=<H])++[H]++

qsort([E : E in T, E>H]).

A function call never fails and never succeeds more than once. For function calls such as fib(-1)
or fib(X), Picat raises an exception.

Picat allows inclusion of function facts in the form f(t1,. . .,tn)=Exp in function definitions.

Example

fib(0)=1.
fib(1)=1.
fib(N)=F,N>1 => F=fib(N-1)+fib(N-2).

qsort([])=[].
qsort([H|T])=qsort([E : E in T, E=<H])++[H]++qsort([E : E in T, E>H]).

Function facts are automatically indexed on all of the input arguments, and hence no index decla-
ration is necessary. Note that while a predicate call with no argument does not need parentheses, a
function call with no argument must be followed with parentheses, unless the function is module-
quantified, as in math.pi.

The fib function can also be defined as follows:

fib(N) = cond((N=0;N=1),1,fib(N-1)+fib(N-2)).

The conditional expression returns 1 if the condition (N=0;N=1) is true, and the value of
fib(N-1)+fib(N-2) if the condition is false.

6

1.4 Assignments and Loops

Picat allows assignments in rule bodies. An assignment takes the form LHS:=RHS, where LHS
is either a variable or an access of a compound value in the form X[...]. When LHS is an
access in the form X[I], the component of X indexed I is updated. This update is undone if
execution backtracks over this assignment.

Example

test => X=0, X:=X+1, X:=X+2, write(X).

In order to handle assignments, Picat creates new variables at compile time. In the above
example, at compile time, Picat creates a new variable, say X1, to hold the value of X after the
assignment X:=X+1. Picat replaces X by X1 on the LHS of the assignment. It also replaces all of
the occurrences of X to the right of the assignment by X1. When encountering X1:=X1+2, Picat
creates another new variable, say X2, to hold the value of X1 after the assignment, and replaces
the remaining occurrences of X1 by X2. When write(X2) is executed, the value held in X2,
which is 3, is printed. This means that the compiler rewrites the above example as follows:

test => X=0, X1=X+1, X2=X1+2, write(X2).

Picat supports foreach and while statements for programming repetitions. A foreach
statement takes the form

foreach (E1 in D1, Cond1, . . ., En in Dn, Condn)
Goal

end

where each iterator, Ei in Di, can be followed by an optional condition Condi. Within each
iterator, Ei is an iterating pattern, and Di is an expression that gives a compound value. The
foreach statement means that Goal is executed for every possible combination of values E1 ∈
D1, . . ., En ∈ Dn that satisfies the conditions Cond1, . . ., Condn. A while statement takes the
form

while (Cond)
Goal

end

It repeatedly executes Goal as long as Cond succeeds. A variant of the while loop in the form of

do
Goal

while (Cond)

executes Goal one time before testing Cond.
Variables that occur only in a loop, but do not occur before the loop in the outer scope, are

local to each iteration of the loop. For example, in the following rule:

p(A) =>
foreach (I in 1 .. A.length)

E = A[I],
writeln(E)

end.

the variables I and E are local, and each iteration of the loop has its own values for these variables.

7

Example

write_map(Map) =>
foreach (Key=Value in Map)

writef("%w=%w\n",Key,Value)
end.

sum_list(L)=Sum => % returns sum(L)
S=0,
foreach (X in L)

S:=S+X
end,
Sum=S.

read_list=List =>
L=[],
E=read_int(),
while (E != 0)

L := [E|L],
E := read_int()

end,
List=L.

The function read list reads a sequence of integers into a list, terminating when 0 is read. The
loop corresponds to the following sequence of recurrences:

L=[]
L1=[e1|L]
L2=[e2|L1]
. . .
Ln=[en|Ln−1]
List=Ln

Note that the list of integers is in reversed order. If users want a list in the same order as the input,
then the following loop can be used:

read_list=List =>
List=L,
E=read_int(),
while (E != 0)

L = [E|T],
L := T,
E := read_int()

end,
L=[].

This loop corresponds to the following sequence of recurrences:

L=[e1|L1]
L1=[e2|L2]
. . .
Ln−1=[en|Ln]
Ln=[]

8

Loop statements are compiled into tail-recursive predicates. For example, the second read list
function given above is compiled into:

read_list=List =>
List=L,
E=read_int(),
p(E,L,Lout),
Lout=[].

p(0,Lin,Lout) => Lout=Lin.
p(E,Lin,Lout) =>

Lin=[E|Lin1],
NE = read_int(),
p(NE,Lin1,Lout).

A list comprehension is first compiled into a foreach loop, and then the loop is compiled
into a call to a generated tail-recursive predicate. For example, the list comprehension

List = [(A,X) : A in [a,b], X in 1..2]

is compiled into the following loop:

List = L,
foreach(A in [a,b], X in 1..2)

L = [(A,X)|T],
L := T

end,
L = [].

1.5 Tabling

A predicate defines a relation where the set of facts is implicitly generated by the rules. The
process of generating the facts may never end and/or may contain a lot of redundancy. Tabling
can prevent infinite loops and redundancy by memorizing calls and their answers. In order to have
all calls and answers of a predicate or function tabled, users just need to add the keyword table
before the first rule.

Example

table
fib(0)=1.
fib(1)=1.
fib(N)=F,N>1 => F=fib(N-1)+fib(N-2).

When not tabled, the function call fib(N) takes exponential time in N. When tabled, however, it
takes only linear time.

Users can also give table modes to instruct the system on what answers to table. Mode-directed
tabling is especially useful for dynamic programming problems. In mode-directed tabling, a plus-
sign (+) indicates input, a minus-sign (-) indicates output, max indicates that the corresponding
variable should be maximized, and min indicates that the corresponding variable should be mini-
mized.

9

Example

table(+,+,min)
edit([],[],D) => D=0.
edit([X|Xs],[X|Ys],D) =>

edit(Xs,Ys,D).
edit(Xs,[Y|Ys],D) ?=> % insert

edit(Xs,Ys,D1),
D=D1+1.

edit([X|Xs],Ys,D) => % delete
edit(Xs,Ys,D1),
D=D1+1.

For a call edit(L1,L2,D), where L1 and L2 are given lists and D is a variable, the rules can
generate all facts, each of which contains a different editing distance between the two lists. The
table mode table(+,+,min) tells the system to keep a fact with the minimal editing distance.

A tabled predicate can be preceded by both a table declaration and at most one index declara-
tion if it contains facts. The order of these declarations is not important.

1.6 Modules

A module is a source file with the extension .pi. A module begins with a module name declara-
tion and optional import declarations. A module declaration has the form:

module Name.

where Name must be the same as the main file name. A file that does not begin with a module
declaration is assumed to belong to the global module, and all of the predicates and functions that
are defined in such a file are visible to all modules as well as the top-level of the interpreter.

An import declaration takes the form:

import Name1, . . ., Namen.

where each Namei is either a module name or M.S, where M is a module name, and S is a
predicate or function symbol. When a module is imported, all of its public predicates and functions
will be visible to the importing module. A public predicate or function in a module can also
be accessed by preceding it with a module qualifier, as in m.p(), but the module still must be
imported.

Atoms and structure names do not belong to any module, and are globally visible. In a module,
predicates and functions are assumed to be visible both inside and outside of the module, unless
their definitions are preceded by the keyword private.

Example

% in file my_sum.pi
module my_sum.

my_sum(L)=Sum =>
sum_aux(L,0,Sum).

private
sum_aux([],Sum0,Sum) => Sum=Sum0.

10

sum_aux([X|L],Sum0,Sum) => sum_aux(L,X+Sum0,Sum).

% in file test_my_sum.pi
module test_my_sum.
import my_sum.

go =>
writeln(my_sum([1,2,3,4])).

The predicate sum aux is private, and is never visible outside of the module. The following
shows a session that uses these modules.

picat> load("test_my_sum")

picat> go
10

The command load(File) loads a module file into the system. If the file has not been compiled,
then the load command compiles the file before loading it. If this module is dependent on other
modules, then the other modules are loaded automatically if they are not yet in the system. When
a module is loaded, all of its public predicates and functions become visible to the interpreter.

The Picat module system is static, meaning that the binding of normal calls to their definitions
takes place at compile time. For higher-order calls, however, Picat may need to search for their
definitions at runtime.

1.7 Constraints

Picat can be used as a modeling and solving language for constraint satisfaction and optimization
problems. A constraint program normally poses a problem in three steps: (1) generate variables;
(2) generate constraints over the variables; and (3) call solve to find a valuation for the variables
that satisfies the constraints, and possibly optimizes an objective function. Picat provides three
solver modules, including cp, sat, and mip.

Example

import cp.

go =>
Vars=[S,E,N,D,M,O,R,Y], % generate variables
Vars in 0..9,
all_different(Vars), % generate constraints
S #!= 0,
M #!= 0,
1000*S+100*E+10*N+D+1000*M+100*O+10*R+E

#= 10000*M+1000*O+100*N+10*E+Y,
solve(Vars), % search
writeln(Vars).

In arithmetic constraints, expressions are treated as data, and it is unnecessary to enclose them
with dollar-signs.

The loops provided by Picat facilitate modeling of many constraint satisfaction and optimiza-
tion problems. The following program solves a Sudoku puzzle:

11

import cp.

sudoku =>
instance(N,A),
A in 1..N,
foreach(Row in 1..N)

all_different([A[Row,Col] : Col in 1..N])
end,
foreach(Col in 1..N)

all_different([A[Row,Col] : Row in 1..N])
end,
M=floor(sqrt(N)),
foreach(Row in 1..M, Col in 1..M)

Square = [A[Row1,Col1] :
Row1 in (Row-1)*M+1..Row*M,
Col1 in (Col-1)*M+1..J*M],

all_different(Square)
end,
solve(A),
foreach(I in 1..N) write(A[I]) end.

instance(N,A) =>
N=9,
A={{5,3,_,_,7,_,_,_,_},

{6,_,_,1,9,5,_,_,_},
{_,9,8,_,_,_,_,6,_},
{8,_,_,_,6,_,_,_,3},
{4,_,_,8,_,3,_,_,1},
{7,_,_,_,2,_,_,_,6}}.

Recall that variables that occur within a loop, and do not occur before the loop in the outer scope,
are local to each iteration of the loop. For example, in the third foreach statement of the
sudoku predicate, the variables Row, Col, and Square are local, and each iteration of the
loop has its own values for these variables.

1.8 Exceptions

An exception is an event that occurs during the execution of a program that requires a special treat-
ment. In Picat, an exception is just a term. Example exceptions include divide by zero(Source),
file not found(Name,Source), number expected(ExArg,Source), interrupt(Source),
and out of range(ExArg,Source). The exception interrupt(keyboard) is raised
when ctrl-c is typed during a program’s execution. The built-in predicate throw Exception
throws Exception.

The try statement, which takes the following form, is provided for catching and handling
exceptions.

try
Goal

catch (Pattern1)
Handler1

12

...
catch (Patternn)

Handlern
finally

Handlerfin
end

where each Patterni is a term pattern like the head of a rule, and each Handleri is a goal.
For an exception, a catch clause is said to be applicable if the exception matches the pattern of
the clause. When an exception is thrown during the execution of Goal, the system searches for
the first applicable catch clause and executes the handler. If no catch clause is applicable to the
exception, then Handlerfin is executed. The finally block, which is optional, is also executed
when Goal ends normally, i.e., when Goal fails or Goal succeeds deterministically with no choice
points left behind.

1.9 Higher-Order Calls

A predicate or function is said to be higher-order if it takes calls as arguments. The built-ins call,
apply, and findall are higher-order. The predicate call(S,Arg1,. . .,Argn), where S is
an atom or a structure, calls the predicate named by S with the arguments that are specified in S to-
gether with extra arguments Arg1,. . .,Argn. The function apply(S,Arg1,. . .,Argn) is similar
to call, except that apply returns a value. The function findall(Template,S,Arg1,. . .,Argn)
returns a list of all possible solutions of call(S,Arg1,. . .,Argn) in the form of Template.

Example

picat> S=$member(X)$, call(S,[1,2,3])
X=1;
X=2;
X=3;
no

picat> L=findall(X,member,X,[1,2,3]).
L=[1,2,3]

picat> C=lambda([X,Y],X+Y), Z=apply(C,1,2)
Z=3

A lambda term in the form lambda(V List,Exp), where V List is a list of input variables, and
Exp is an expression, denotes an anonymous function. The last command in the example is the
same as Z=apply(add,1,2), where add is a function defined as follows:

add(X,Y)=Z => Z=X+Y.

The meta-call apply never returns a partially evaluated function. If the number of arguments
does not match the required number, then it throws an exception.

Example

map(_F,[]) = [].
map(F,[X|Xs])=[apply(F,X)|map(F,Xs)].

13

map2(_F,[],[]) = [].
map2(F,[X|Xs],[Y|Ys])=[apply(F,X,Y)|map2(F,Xs,Ys)].

fold(_F,Acc,[]) = Acc.
fold(F,Acc,[H|T])=fold(F, apply(F,H,Acc),T).

A call that is passed to a higher-order predicate or function is assumed to invoke a definition in
the same module or an imported module. If the compiler cannot bind a call to a definition because
the name is unknown, then it generates code to search the enclosing module, and the imported
modules for a definition at runtime.

1.10 Action Rules and Threads

Picat provides action rules for describing event-driven actors. An actor is a predicate call that can
be delayed, and can be activated later by events. Each time an actor is activated, an action can be
executed. A predicate for actors contains at least one action rule in the form:

Head,Cond, {Event}=> Body

where Head is an actor pattern, Cond is an optional condition, Event is a non-empty set of event
patterns separated by ’,’, and Body is an action. For an actor and an event, an action rule is
said to be applicable if the actor matches Head and Cond is true. A predicate for actors cannot
contain backtrackable rules.

An event channel is an attributed variable to which actors can be attached, and through which
events can be posted to actors. A channel has four ports: ins, bound, dom, and any. An event
pattern in Event specifies the port to which the actor is attached. The event pattern ins(X)
attaches the actor to the ins-port of channel X , and the actor will be activated when X is in-
stantiated. The event pattern event(X,T) attaches the actor to the dom-port of channel X .
The built-in post event(X,T) posts an event term T to the dom-port of channel X . After an
event is posted to a port of a channel, the actors attached to that port are activated. For an activated
actor, the system searches for an applicable rule and executes the rule body if it finds one. After
execution, the actor is suspended, waiting to be activated again by other events. Picat does not
provide a built-in for detaching actors from channels. An actor fails if no rule is applicable to it
when it is activated or the body of the applied rule fails. An actor becomes a normal call once a
normal non-backtrackable rule is applied to it.

Example

echo(X,Flag),var(Flag),{event(X,T)} => writeln(T).
echo(Flag) => writeln(done).

When a call echo(X,Flag) is executed, where Flag is a variable, it is attached to the dom-port
of X as an actor. The actor is then suspended, waiting for events posted to the dom-port. For this
actor definition, the command

echo(X,Flag), post_event(X,hello), post_event(X,picat).

prints out hello followed by picat. If the call Flag=1 is inserted before post event(X,picat),
then var(Flag) fails when the actor is activated the second time, causing the second rule to be
applied to the actor. Then, the output will be hello followed by done.

A thread is represented as an attributed variable that contains, among other attributes, a thread
descriptor. A thread can serve as a communication channel. A thread can send a message to
another thread by posting an event. Action rules can be used to program concurrent threads.

14

Example

import thread.

go =>
EchoThread = new_thread(install_echo_actor),
SenderThread = new_thread(send,3,EchoThread),
EchoThread.start(),
SenderThread.start().

install_echo_actor =>
echo(this_thread(),Flag),
loop(Flag).

echo(X,Flag),var(Flag),{event(X,T)} =>
writeln(T),
if (T==done) then Flag=1 end.

echo(_,_) => true.

loop(Flag),var(Flag) => loop(Flag).
loop(_) => true.

send(N,EchoThread) =>
foreach(I in 1..N)

post_event(EchoThread,hello)
end,
post_event(EchoThread,done).

The built-in function new thread(S,Arg1,. . .,Argn) creates a new thread to execute the call

call(S,Arg1,. . .,Argn).

The built-in function this thread() returns the executing thread of the function call. In
this example, the EchoThread installs an actor, and then loops until Flag becomes a non-
variable; the SenderThread sends hello to EchoThread three times, and then sends done
to EchoThread, causing it to kill itself. After sending the messages, the SenderThread ter-
minates.

1.11 Global Maps

Each thread has a map, called a global heap map, which is created on the heap immediately after
the thread is created. The built-in function get heap map() returns the map that belongs to the
current thread. A thread map is like a normal map. Users use put to add key-value pairs into a
map. Users use get to retrieve a value that is associated with a key in the map. Changes to a map
up to a choice point are undone when execution backtracks to that choice point.

The Picat system has a global map that is shared by all threads. The global map is created
in the global area when the Picat system is started. The built-in function get global map()
returns this map. A big difference between this global map and a heap map is that changes to the
global map are not undone upon backtracking. When a key-value pair is added into the global
map, the variables in the value term are numbered before they are copied to the global area. If the
value term contains attributed variables, then the attributes of the variables are not copied, and are

15

therefore lost. When retrieving a value that is associated with a key, the value term in the global
area is copied back to the heap after all of the numbered variables are unnumbered.

The advantage of using global maps is that data can be accessed everywhere without being
passed as arguments, and the disadvantage is that it affects locality of data and thus the read-
ability of programs. In tabled programs, using global maps is discouraged because it may cause
unanticipated effects.

Example

go ?=>
get_heap_map().put(one,1),
get_global_map().put(one,1),
fail.

go =>
if (get_heap_map().contains_key(one)) then

writef("heap map has key%n")
else

writef("heap map has no key%n")
end,
if (get_global_map().contains_key(one)) then

writef("global map has key%n")
else

writef("global map has no key%n")
end.

For the call go, the output is "heap map has no key" followed by "global map has
key". The fail call in the first rule causes execution to backtrack to the second rule. After
backtracking, the pair added to the heap map by the first rule is lost, but the pair added to the
global map remains.

1.12 External Language Interfaces and Libraries

Picat has well-defined interfaces with C and Java. The dynamic libraries (dll or so files) of
the Picat system will be made available so that users can easily link Picat programs with external
software components though C or Java. Picat also supports access to databases through the ODBC
interface.

Picat provides a rich library of modules for applications such as language processing (Regix,
DCG, etc.), Web services (server side programming, RIF data processing, semantic web applica-
tions, etc.), mobile applications for handheld devices, and game programming.

1.13 Resources

• An overview of Picat: http://www.picat-lang.org/download/picat_proposal.pdf

• Examples: http://www.picat-lang.org/download/exs.pi.txt

• Libraries: http://www.picat-lang.org/download/builtin.pdf

• Lexical grammar: http://www.picat-lang.org/download/lex_grammar.txt

• Syntax grammar: http://www.picat-lang.org/download/syntax_grammar.txt

16

1.14 Programming Exercises

Select five problems from the Euler Project problem set at http://projecteuler.net/problems
and write a program in Picat for each of them.

17

Chapter 2

How to Use the Picat System

The environment variable PICATDIR should be set to store the full path of the directory in which
Picat is installed. The Picat system is written in both C and Picat. The part that is written in
C is compiled into the executable named $PICATDIR/Emulator/picat on Unix systems,
or %PICATDIR%\Emulator\picat.exe on Windows. The part that is written in Picat is
divided into files stored in $PICATDIR/Compiler and $PICATDIR/Library.

Picat source files have the extension name pi. A module file is a source file that begins with
a module declaration. Not every source file is a module file. A module can be spread across
multiple files. In that case, only the file name.pi will have the module declaration module
Name. Furthermore, name.pi will have an include statement, listing the other files that
contain parts of the module. For example, the file basic.pi has the following content:

module basic.
include "basic_list.pi", "basic_array.pi",

"basic_map.pi", "basic_term.pi", "basic_io.pi".

The file basic.pi does not define any predicates or functions, but it includes a bunch of other
source files. None of the included files has a module declaration.

The files with the extension names qi and dbqi are bytecode files that are generated from the
module files. The Picat system can be run in either debug mode or non-debug mode. The dbqi
files are used for debug mode, and the qi files are used for non-debug mode. When the Picat
system is in debug mode, it allows debugging, and dumps the stack trace when it encounters an
uncaught exception.

There are three executable script files in the directory $PICATDIR: picat, picatc, and
picate. The script picat starts the Picat interpreter; the script picatc compiles Picat files;
the script picate runs a Picat program as a standalone application.

2.1 How to Use the Picat Interpreter

The Picat system provides an interactive programming environment for users to load, debug, and
execute programs. In order to start the Picat interpreter, users first need to open an OS termi-
nal. In Windows, this can be done by selecting Start->Run and typing cmd or selecting
Start->Programs->Accessories->Command Prompt. In order to start the Picat in-
terpreter in any working directory, the path must be properly set. In Unix, this can be done by
adding the following line to the script file .cshrc, .bshrc, or .kshrc depending on the shell
that is used:

alias picat $PICATDIR/picat

18

In Windows, Picat’s root directory, %PICATDIR, must be added to the environment variable
named path.

2.1.1 How to Enter and Quit the Picat Interpreter

The Picat interpreter is started with the OS command picat.

OSPrompt picat

where OSPrompt is the OS prompt. After the interpreter is started, it responds with the prompt
picat>, and is ready to accept queries.

Once the interpreter is started, users can type a query after the prompt. For example,

picat> X=1+1
X=2
picat> printf("hello"++" picat")
hello picat

Users can change the prompt by using the query prompt(NewPrompt). For example, the
command

prompt("?-")

changes the prompt to ?-. The help predicate shows the usages of the main commands.
The halt predicate, or the exit predicate, terminates the Picat interpreter. An alternative

way to terminate the interpreter is to enter ctrl-d (control-d) when the cursor is located at the
beginning of an empty line.

2.1.2 How to Use the Command-line Editor

The Picat interpreter uses the getline program written by Chris Thewalt. The getline pro-
gram memorizes up to 100 of the most recent queries that the users have typed, and allows users
to recall past queries and edit the current query by using Emacs editing commands. The following
gives the editing commands:

ctrl-f Move the cursor one position forward.
ctrl-b Move the cursor one position backward.
ctrl-a Move the cursor to the beginning of the line.
ctrl-e Move the cursor to the end of the line.
ctrl-d Delete the character under the cursor.
ctrl-h Delete the character to the left of the cursor.
ctrl-k Delete the characters to the right of the cursor.
ctrl-u Delete the whole line.
ctrl-p Load the previous query in the buffer.
ctrl-n Load the next query in the buffer.

Note that the command ctrl-d terminates the interpreter if the line is empty and the cursor is
located in the beginning of the line.

2.1.3 How to Compile and Load Programs

A Picat program is stored in one or more text files with the extension name pi. A file name is a
string of characters. A file name can start with an environment variable, such as $V or %V%, which
will be replaced by its value before the file name is actually processed. Picat treats both ’/’ and

19

’\’ as file name separators. Nevertheless, since ’\’ is used as the escape character in quoted
strings, two consecutive backslashes must be used, as in "c:\\work\\myfile.pi", if ’\’
is used as the separator.

A program first needs to be compiled and loaded into the system before it can be executed. The
built-in predicate cl(FileName) compiles and loads the source file named FileName.pi.
Note that if the full path of the file name is not given, then the file is assumed to be in the current
working directory. Also note that users do not need to give the extension name. The system
compiles and loads not only the source file FileName.pi, but also all of the module files that
are either directly imported or indirectly imported by the source file. The system searches for such
dependent files in the Picat library directory $PICATDIR/Library, in the current working
directory, and in the directories that are stored in the environment variable PICATPATH. For
FileName.pi and each dependent module file, the compiler creates a byte-code file with the
same main name and the extension name .qi or .dbqi, depending on the current execution
mode. If the mode is non-debug mode, then the extension name is qi; otherwise, if the mode is
debug mode, then the extension name is dbqi. If the directory in which the source file resides is
not writable, then no byte-code file will be created, and the byte code will be loaded directly into
the system.

The built-in predicate compile(FileName) compiles the file FileName.pi and all of its
dependent module files without loading the generated byte-code files. The destination directory
for the byte-code file is the same as the source file’s directory. If the Picat interpreter does not have
permission to write into the directory in which a source file resides, then this built-in throws an
exception.

The built-in predicate load(FileName) loads the byte-code file FileName.qi or
FileName.dbqi, depending on the current execution mode, and all of its dependent byte-code
files. For FileName and its dependent file names, the system searches for a byte-code file in
the Picat library directory $PICATDIR/Library, in the current working directory, and in the
directories that are stored in the environment variable PICATPATH. If no byte-code file exists for
a file name, then this built-in throws an exception.

2.1.4 How to Run Programs

After a program is loaded, users can query the program. For each query, the system executes the
program, and reports yes when the query succeeds and no when the query fails. When a query
that contains variables succeeds, the system also reports the bindings for the variables. Users can
ask the system to find the next solution by typing ’;’ after a solution. For example,

picat> member(X,[1,2,3])
X=1;
X=2;
X=3;
no

Users can force a program to terminate by typing ctrl-c, or by letting it execute the built-
in predicate abort. Note that when the system is engaged in certain tasks, such as garbage
collection, users may need to wait for a while in order to see the termination after they type
ctrl-c.

2.2 How to Use the Debugger

There are two execution modes: debug mode and non-debug mode. When the Picat interpreter is
started, it runs in non-debug mode. The predicate debug changes the mode to debug. In order

20

to enable the debugger to display debugging information for a program, users have to switch the
mode to debug before loading the program. The predicate nodebug changes the mode to non-
debug.

In debug mode, the debugger displays execution traces of queries. An execution trace consists
of a sequence of call traces. Each call trace is a line that consists of a stage, the number of the call,
and the information about the call itself. For a function call, there are two possible stages: Call,
meaning the time at which the function is entered, and Exit, meaning the time at which the call
is completed with an answer. For a predicate call, there are two additional possible stages: Redo,
meaning a time at which execution backtracks to the call, and Fail, meaning the time at which
the call is completed with no answer. The information about a call includes the module name, the
name of the call, and the arguments. If the call belongs to the global module or the basic module
of the library, then the module name is not shown. If the call is a function, then the call is followed
by = and ? at the Call stage, and followed by = V alue at the Exit stage, where V alue is
the return value of the call. For a loop, the debugger displays its name, which can be foreach,
while, do-while, or list-comp, when the loop is entered or exited.

Consider, for example, the following program:

p(X) ?=> X=a.
p(X) => X=b.
q(X) ?=> X=1.
q(X) => X=2.

The following shows a trace for a query:

picat> p(X),q(Y)
Call: (1) p(_328) ?
Exit: (1) p(a)
Call: (2) q(_378) ?
Exit: (2) q(1)

X = a
Y = 1 ?;

Redo: (2) q(1) ?
Exit: (2) q(2)

X = a
Y = 2 ?;

Redo: (1) p(a) ?
Exit: (1) p(b)
Call: (3) q(_378) ?
Exit: (3) q(1)

X = b
Y = 1 ?;

Redo: (3) q(1) ?
Exit: (3) q(2)

X = b
Y = 2 ?;
no

In debug mode, the debugger displays every call in every possible stage. Users can set spy
points so that the debugger only shows information about calls of the symbols that users are spying.
Users can use the predicate

spy M.Name/N

21

to set the functor Name/N of module M as a spy point, where the module name M and arity
N are optional. If no module name is given in a spy point, then the functor is assumed to belong
to the global module, the basic module, or one of the currently imported modules. If no arity is
given, then any functor of Name is treated as a spy point, regardless of the arity.

After displaying a call trace, if the trace is for stage Call or stage Redo, then the debugger
waits for a command from the users. A command is either a single letter followed by a carriage-
return, or just a carriage-return. The following debugging commands are accepted:

RET creep, show the next call trace.
c creep, same as RET.
l leap, be silent until a spy point is encountered.
s skip, be silent until the call is completed (Exit or Fail).
r repeat, continue to creep or leap without intervention.
a abort, quit debugging, moving control to the top level.
h help, display the debugging commands.
? help, same as h.
t backtrace, show the backtrace leading to the current call.
t i backtrace, show the backtrace from the call numbered i to the current call.
u undo what has been done to the current call and redo it.
u i undo what has been done to the call numbered i and redo it.
< reset the print depth to 10.
< d reset the print depth to d.

2.3 How to Use the picate and picatc Commands

The script file picate executes a Picat program as a standalone application. The command is
used in the following way:

picate -path Path1;. . .;Pathn -debug FileName Arg1 . . . Argm

where the option path specifies the paths where byte code files are searched, and the option
debug tells the system to load dbpi byte code files rather than optimized pi files. Although
users cannot use the debugger when running a standalone application in debug mode, users can
view the stack trace in case an uncaught exception occurs during the execution. The command
takes exactly one file name FileName. The FileName’s byte code file and all of its dependent
byte code files will be loaded. The system will search for the byte code files in the paths that are
specified in the command. If no path is given, then the system searches the paths that are included
in the environment variable $PICATPATH. The command can also take several arguments after
the file name. The file of FileName must contain a predicate named main(Args), where Args
is a list. All of the command arguments Arg1 . . . Argm will be passed to the main predicate as a
list of strings.

The script file picatc compiles Picat source files. The command is used in the following
way:

picatc -path Path1;. . .;Pathn -debug FileName1 . . . F ileNamen

where the options are the same as in the command picate. The command compiles all of the
source files FileName1 . . . F ileNamen and all of their dependent files into byte code files. If
the option debug is given, then the debuggable byte code files with the extension name dbqi are
generated; otherwise, the optimized byte code files with the extension name qi are generated.

22

2.4 How to Use the Profiler

The built-in predicate profile src(FileName), where FileNames is the main name of a
source file, reports the following information about the source file and all of its dependent files:

• What predicates and functions are defined?

• What predicates and functions are used but not defined?

• What predicates and functions are defined but not used?

• What built-ins are used?

The predicate profile src can be used in both debug and non-debug modes.
The built-in predicate profile(Query) prints the number of times that each predicate or

function is called during the execution of Query. The reported statistics are helpful for fine-
tunning programs for better performance. The predicate profile can be used only in debug
mode with dbpi files.

23

Chapter 3

Data Types, Operators, and Built-ins

Picat is a dynamically-typed language, in which type checking occurs at runtime. A variable
gets a type once it is bound to a value. In Picat, variables and values are terms. A value can
be primitive or compound. A primitive value can be an integer, a real number, or an atom. A
compound value can be a list or a structure. Strings, arrays, and maps are special compound
values. This chapter describes the data types and the built-ins for each data type that are provided
by the basic module.

Many of the built-ins are given as operators. Table 3.1 shows all of the operators that are
provided by Picat. Unless the table specifies otherwise, the operators are left-associative. The as-
pattern operator (@) and the operators for composing goals, including not, once, conjunction (,),
and disjunction (;), will be described in Chapter 4 on Predicates and Functions. The constraint
operators (the ones that begin with #) will be described in Chapter 14 on Constraints. In Picat, no
new operators can be defined, and none of the existing operators can be redefined.

The dot operator (.) is used in OOP notations for accessing attributes and for calling predicates
and functions. It is also used to qualify calls with a module name. The notation A1.f(A2, . . . , Ak)
is the same as f(A1, A2, . . . , Ak), unless A1 is a module name, in which case A1 is a module
qualifier for f . If an atom happens to be the same as one of the imported module names, and
the atom needs to be passed as the first argument to a function or a predicate, then this notation
cannot be used. The notation A.Attr, where Attr does not have the form f(. . .), is the same
as the function call get(A,Attr). For example, the expression S.name returns the name, and
the expression S.arity returns the arity of S if S is a structure. Note that the dot operator is
left-associative. For example, the expression a.b().c() is the same as c(b(a)), unless a is
the name of an imported module.

3.1 Variables

Variables in Picat, like variables in mathematics, are value holders. Unlike variables in imperative
languages, Picat variables are not symbolic addresses of memory locations. A variable is said to
be free if it does not hold any value. A variable is instantiated when it is bound to a value. Picat
variables are single-assignment, which means that after a variable is instantiated to a value, the
variable will have the same identity as the value. After execution backtracks over a point where a
binding took place, the value that was assigned to a variable will be dropped, and the variable will
be turned back into a free variable.

A variable name is an identifier that begins with a capital letter or the underscore. For example,
the following are valid variable names:

X1 _ _ab

24

Table 3.1: Operators in Picat

Precedence Operators
Highest ., @

** (right-associative)
unary +, unary -, ˜

*, /, //, />, /<, div, mod, rem
binary +, binary -
>>, >>>, <<

/\
ˆ
\/
..

=, !=, :=, ==, !==, >, >=, <, =<, <=, in, notin #=, #!=, #>, #>=, #<, #=< #<=
#˜
#/\
#ˆ
#\/

#=> (right-associative)
#<=>

not, once, spy, nospy
, (right-associative)

Lowest ; (right-associative)

25

The name _ is used for anonymous variables. In a program, different occurrences of _ are treated
as different variables. So the test _ == _ is always false.

The following two built-ins are provided to test whether a term is a free variable:

• var(Term): This predicate is true if Term is a free variable.

• nonvar(Term): This predicate is true if Term is not a free variable.

An attributed variable is a variable that has a map of attribute-value pairs attached to it. The
following built-ins are provided for attributed variables:

• attr var(Term): This predicate is true if Term is an attributed variable.

• has key(X, Key): This predicate is true if X has an attribute named Key.

• keys(X) = List: This function returns the list of names of the attributes of X .

• get(X, Key) = V al: This function returns the V al of the key-value pair Key=V al
that is attached to X . It throws an error if X has no attribute named Key.

• put(X, Key, V al): This predicate attaches the key-value pair Key=V al to X , where
Key is a non-variable term, and V al is any term.

• values(X) = List: This function returns the list of values of the attributes of X .

3.2 Atoms

An atom is a symbolic constant. An atom name can either be quoted or unquoted. An unquoted
name is an identifier that begins with a lower-case letter, followed by an optional string of letters,
digits, and underscores. A quoted name is a single-quoted sequence of arbitrary characters. A
character can be represented as a single-character atom. For example, the following are valid atom
names:

x x_1 ’_’ ’\\’ ’a\’b\n’ ’_ab’ ’$%’

No atom name can last more than one line. An atom name cannot contain more than 1000 char-
acters. The backslash character ’\’ is used as the escape character. So, the name ’a\’b\n’
contains four characters: a, ’, b, and \n.

The following built-ins are provided for atoms:

• atom(Term): This predicate is true if Term is an atom.

• atomic(Term): This predicate is true if Term is an atom or a number.

• char code(Char) = Int: This function returns the code of the character Char. It
throws an error if Char is not a single-character atom.

• atom chars(Atm) = String: This function returns string that contains the characters
of the atom Atm. It throws an error if Atm is not an atom.

• atom codes(Atm) = List: This function returns the list of codes of the characters of
the atom Atm. It throws an error if Atm is not an atom.

26

Table 3.2: Arithmetic Operators

X ** Y power
+X same as X
-X sign reversal
˜X bitwise complement

X * Y multiplication
X / Y division
X // Y integer division, truncated
X /> Y integer division (ceiling(X / Y))
X /< Y integer division (floor(X / Y))
X div Y integer division, rounded down
X mod Y modulo, same as X - floor(X / Y) * Y

X rem Y remainder (X - (X // Y) * Y)
X + Y addition
X - Y subtraction
X >> Y right shift
X >>> Y unsigned right shift
X << Y left shift
X /\ Y bitwise and
X ˆ Y bitwise xor
X \/ Y bitwise or

From .. Step .. To A range (list) of numbers with a step
From .. To A range (list) of numbers with step 1

3.3 Numbers

A number can be an integer or a real number. An integer can be a decimal numeral, a binary
numeral, an octal numeral, or a hexadecimal numeral. In a numeral, digits can be separated by
underscores, but underscore separators are ignored by the tokenizer. For example, the following
are valid integers:

12 345 a decimal numeral
0b100 4 in binary notation
0o73 59 in octal notation
0xf7 247 in hexadecimal notation

A real number consists of an optional integer part, an optional decimal fraction preceded by
a decimal point, and an optional exponent. If an integer part exists, then it must be followed by
either a fraction or an exponent in order to distinguish the real number from an integer literal. For
example, the following are valid real numbers.

12.345 .123 12-e10 0.12E10

Table 3.2 gives the meaning of each of the numeric operators in Picat, from the operator with
the highest precedence (**) to the one with the lowest precedence (..). Except for the power
operator **, which is right-associative, all of the arithmetic operators are left-associative.

In addition to the numeric operators, the basic module also provides the following built-ins
for numbers:

27

• between(From, To, X) (nondet): If X is bound to an integer, then this predicate
determines whether X is between From and To. Otherwise, if X is unbound, then this
predicate nondeterministically selects X from the integers that are between From and To.
It is the same as member(X, From..To).

• number(Term): This predicate is true if Term is a number.

• integer(Term): This predicate is true if Term is an integer.

• float(Term): This predicate is true if Term is a real number.

• real(Term): This predicate is true if Term is a real number. It is the same as float(Term).

• max(X, Y) = V al: This function returns the maximum of X and Y .

• min(X, Y) = V al: This function returns the minimum of X and Y .

• number chars(Num) = String: This function returns a list of characters of Num.
This function is the same as to fstring("%d",Num) if Num is an integer, and the
same as to fstring("%f",Num) if Num is a real number.

• number codes(Num) = List: This function returns a list of codes of the characters
of Num. It is the same as number chars(Num).to codes().

• to binary string(Int) = String: This function returns the binary representation of
the integer Int as a string.

• to oct string(Int) = String: This function returns the octal representation of the
integer Int as a string.

• to hex string(Int) = String: This function returns the hexadecimal representation
of the integer Int as a string.

• to integer(Num) = Int: This function is the same as truncate(Num) in the
math module.

• to real(Num) = Real: This function is the same as Num*1.0.

The math module provides more numeric functions. See Appendix A.

3.4 Compound Terms

A compound term can be a list or a structure. Components of compound terms can be accessed
with subscripts. Let X be a variable that references a compound value, and let I be an integer
expression that represents a subscript. The index notation X[I] is a special function that returns
the Ith component of X , counting from the beginning. Subscripts begin at 1, meaning that X[1]
is the first component of X . An index notation can take multiple subscripts. For example, the
expression X[1,2] is the same as T[2], where T is a temporary variable that references the
component that is returned by X[1]. The predicate compound(Term) is true if Term is a
compound term.

A list takes the form [t1,. . .,tn], where each ti (1 ≤ i ≤ n) is a term. Let L be a list. The
expression L.length, which is the same as the functions get(L,length) and length(L),
returns the length of L. Note that a list is represented internally as a singly-linked list. Also note

28

that the length of a list is not stored in memory; instead, it is recomputed each time that the attribute
length is accessed.

The symbol ’|’ is not an operator, but a separator that separates the first element (so-called
car) from the rest of the list (so-called cdr). The cons notation [H|T] can occur in a pattern or
in an expression. When it occurs in a pattern, it matches any list in which H matches the car and
T matches the cdr. When it occurs in an expression, it builds a list from H and T . The notation
[A1,A2,. . .,An|T] is a shorthand for [A1|[A2,. . .,An|T]]. So [a,b,c] is the same as
[a|[b|[c|[]]]].

The following built-ins on lists are provided by the basic module:

• Term1 ++ Term2 = List: This function returns the concatenated list of Term1 and
Term2. If an operand is a list, then the list is concatenated. If an operand is a primitive
value, then the value is converted to a string, using to string, before it is concatenated.
If an operand is a structure, then it is converted to a string, using to list, before it is
concatenated. If an operand is a variable or an incomplete list, then an error is thrown.

• append(X, Y , Z) (nondet): When all three parameters are bound, this predicate de-
termines whether Y can be appended to X in order to create Z. When Z is a variable, this
predicate appends list Y to list X in order to create list Z. In all other cases, this predicate
may backtrack, instantiating X and Y to lists, such that appending Y to X will create Z.

• avg(List) = V al: This function returns the average of all of the numbers in List.

• delete(List, X) = ResList: This function deletes the first occurrence of X from
List, returning the result in ResList.

• delete all(List, X) = ResList: This function deletes all occurrences of X from
List, returning the result in ResList.

• insert(List, Index, Elm) = ResList: This function inserts Elm into List at the
index Index, returning the result in ResList. After insertion, the original List is not
changed, and ResList is the same as
sublist(List, 1, Index-1)++[Elm|sublist(List, Index, List.length)].

• insert all(List, Index, AList) = ResList: This function inserts all of the ele-
ments in AList into List at the index Index, returning the result in ResList. After inser-
tion, the original List is not changed, and ResList is the same as
sublist(List, 1, Index-1)++AList++sublist(List, Index, List.length).

• length(Compound) = Len: This function returns the number of elements that are
contained in a compound term.

• list(Term): This predicate is true if Term is a list.

• max(List) = V al: This function returns the maximum value that is in List.

• membchk(Term, List): This predicate is true if Term is an element of List.

• member(Term, List) (nondet): This predicate is true if Term is an element of List.
When Term is a variable, this predicate may backtrack, instantiating Term to different
elements of List.

• min(List) = V al: This function returns the minimum value that is in List.

29

• new list(N) = List: This function creates a new list that has N free variable argu-
ments.

• remove dups(List) = ResList: This function removes all duplicate values from List,
retaining only the first occurrence of each value. The result is returned in ResList.

• reverse(List) = ResList: This function reverses the order of the elements in List,
returning the result in ResList.

• select(X, List, ResList) (nondet): This predicate nondeterministically selects an
element X from List, and binds ResList to the list after X is removed. On backtracking,
it selects the next element.

• sort(List) = SList: This function sorts the elements of List in ascending order, re-
turning the result in SList.

• sort down(List) = SList: This function sorts the elements of List in descending or-
der, returning the result in SList.

• sublist(List, Start, End) = SubList: Given List, and indices Start and End,
this function returns the sublist [ListStart, . . . , ListEnd].

• sum(List) = V al: This function returns the sum of all of the values in List.

• to array(List) = Array: This function converts the list List to an array. The ele-
ments of the array are in the same order as the elements of the list.

• zip(List1, List2, . . ., Listn) = List: This function makes a list of tuples. The jth
tuple in the list takes the form (E1j , . . . , Enj), where Eij is the jth element in Listi.

A string is represented as a list of single-character atoms. For example, the string "hello"
is the same as the list [h,e,l,l,o]. In addition to the built-ins on lists, the following built-ins
are provided for strings:

• string(Term): This predicate is true if Term is a string.

• to lowercase(String) = LString: This function converts all uppercase alphabetic
characters into lowercase characters, returning the result in LString.

• to uppercase(String) = UString: This function converts all lowercase alphabetic
characters into uppercase characters, returning the result in UString.

A structure takes the form $s(t1,. . .,tn)$, where s is an atom, and n is called the arity of
the structure. The two dollar symbols are used to distinguish a structure from a function call.
The functor of a structure comprises the name and the arity of the structure. A structure has two
attributes: name and arity. The attribute arity is also named length.

The following types of structures can never denote functions, meaning that they do not need
to be placed between two $ symbols.

Goals: (a,b), (a;b), not a, X = Y
Constraints: X+Y #= 100, X #!= 1
Arrays: {2,3,4}, {P1,P2,P3}
Lambda: lambda([X, Y], X + Y)

Picat disallows creation of the following types of structures:

30

Dot notations: math.pi, my module.f(a)
Index notations: X[1]+2, X[Y[I]]
Assignments: X:=Y+Z, X:=X+1
Ranges: 1..10, 1..2..10
List comprehensions: [X : X in 1..5]
If-then: if X>Y then Z=X else Z=Y end
Loops: foreach (X in L) writeln(X) end

The compiler will report a syntax error when it encounters any of these expressions within a pair
of $ symbols.

The following built-ins are provided for structures:

• new struct(Name, IntOrList) = Struct: This function creates a structure that
has the name Name. If IntOrList is an integer, N , then the structure has N free vari-
able arguments. Otherwise, if IntOrList is a list, then the structure contains the elements
in the list.

• struct(Term): This predicate is true if Term is a structure.

• to list(Struct) = List: This function returns a list of the components of the structure
Struct.

An array takes the form {t1,. . .,tn}, which is a special structure with the name ’{}’ and
arity n. In addition to the built-ins for structures, the following built-ins are provided for arrays:

• array(Term): This predicate is true if Term is an array.

A map is a hash-table that is represented as a structure that contains a set of key-value pairs.
The functor of the structure that is used for a map is not important. An implementation may ban
access to the name and the arity of the structure of a map. Maps must be created with the built-in
function new map. In addition to the built-ins for structures, the following built-ins are provided
for maps:

• new map(PairsList) = Map: This function creates a map. PairsList is a list of pairs,
where each pair has the form Key=V al.

• map(Term): This predicate is true if Term is a map.

• get(X, Key) = V al: This function returns V al of the key-value pair Key=V al that
is attached to X . It throws an error if the variable has no attribute named Key.

• put(X, Key, V al): This predicate attaches the key-value pair Key=V al to X , where
Key is a non-variable term, and V al is any term.

• keys(X) = List: This function returns the list of names of the attributes of X .

• values(X) = List: This function returns the list of values of the attributes of X .

• has key(X, Key): This predicate is true if X has an attribute named Key.

• map to list(Map) = PairsList: This function returns a list of Key=V al pairs that
constitute Map.

Most of the built-ins are overloaded for attributed variables.

31

3.5 Equality Testing and Unification

The equality test T1 == T2 is true if term T1 and term T2 are identical. Two variables are identi-
cal if they are aliases. Two primitive values are identical if they have the same type and the same
internal representation. Two lists are identical if the cars are identical and the cdrs are identical.
Two structures are identical if their functors are the same and their components are pairwise iden-
tical. The inequality test T1 !== T2 is the same as not T1 == T2. Note that two terms can be
identical even if they are stored in different memory locations. Also note that it takes linear time
in the worst case to test whether two terms are identical, unlike in C-family languages, in which
the equality test operator == only compares addresses.

The unification T1 = T2 is true if term T1 and term T2 are already identical, or if they can be
made identical by instantiating the variables in the terms. The built-in T1 != T2 is true if term
T1 and term T2 are not unifiable.

Example

picat> X = 1
X = 1
picat> $f(a,b)$ = $f(a,b)$
yes
Picat> [H|T] = [a,b,c]
H = a
T = [b,c]
picat> $f(X,b)$ = $f(a,Y)$
X = a
Y = b
picat> X = $f(X)$
X = f(f(......

The last query illustrates the occurs-check problem. When binding X to f(X), Picat does not
check if X occurs in f(X) for the sake of efficiency. This unification creates a cyclic term, which
can never be entirely printed.

When a unification’s operands contain attributed variables, the implementation is more com-
plex. When a plain variable is unified with an attributed variable, the plain variable is bound to the
attributed variable. When two attributed variables, say Y and O, where Y is younger than O, are
unified, Y is bound to O, but Y ’s attributes are not copied to O. Since garbage collection does not
preserve the seniority of terms, the result of the unification of two attributed variables is normally
unpredictable.

3.6 Expressions

Expressions are made from variables, values, operators, and function calls. Expressions differ
from terms in the following ways:

• An expression can contain dot notations, such as math.pi.

• An expression can contain index notations, such as X[I].

• An expression can contain ranges, such as 1..2..100.

• An expression can contain list comprehensions, such as [X : X in 1..100].

32

A conditional expression, which takes the form cond(Cond,Exp1,Exp2), is a special kind
of function call that returns the value of Exp1 if the condition Cond is true and the value of Exp2
if Cond is false.

Note that, except for conditional expressions in which the conditions are made of predicates,
no expressions can contain predicates. A predicate is true or false, but never returns any value.

3.7 Basic I/O

The basic module provides the following functions to perform input and output to the console.
Users can use these functions without importing the io module.

• read int() = Int: This is the same as io.fread int(stdin).

• read real() = Real: This is the same as io.fread real(stdin).

• read char() = V al: This is the same as io.fread char(stdin).

• read char(N) = String: This is the same as io.fread char(stdin, N).

• read unicode char() = V al: This is the same as io.fread unicode char(stdin).

• read unicode char(N) = String: This is the same as io.fread unicode char(stdin,
N).

• read token() = String: This is the same as io.fread token(stdin).

• read term() = Term: This is the same as io.fread term(stdin).

• read line() = String: This is the same as io.fread line(stdin).

• readln() = String: This is the same as io.freadln(stdin).

• write(Term): This is the same as io.fwrite(stdout, Term).

• write byte(Bytes): This is the same as io.fwrite byte(stdout, Bytes).

• writeln(Term): This is the same as io.fwriteln(stdout, Term).

• writef(Format, Args . . .): This is the same as io.fwritef(stdout, Format,
Args . . .).

• print(Term): This is the same as io.fprint(stdout, Term).

• printf(Format, Args . . .): This is the same as io.fprintf(stdout, Format,
Args . . .).

• println(Term): This is the same as io.fprintln(stdout, Term).

• flush: This is the same as io.flush(stdout).

For predicates that read up to N values, the user can terminate input before entering N values by
typing ctrl-z on Windows systems, and ctrl-d on Unix systems.

The io module provides additional built-ins for file I/O. See Chapter 9.

33

3.8 Other Built-ins on Terms

• get global map() = Map: This function returns the global map, which is shared by
all threads.

• get heap map() = Map: This function returns the current thread’s heap map. Each
thread has its own heap map.

• apply(S, Arg1, . . ., Argn) = V al: This is a higher-order call. S is an atom or a
structure. This function calls the function that is named by S with the arguments that are
specified in S, together with extra arguments Arg1, . . . , Argn. This function returns the
value that S returns.

• call(S, Arg1, . . ., Argn): This is a higher-order call. S is an atom or a structure.
This predicate calls the predicate that is named by S with the arguments that are specified
in S, together with extra arguments Arg1, . . . , Argn.

• findall(Template, S, Arg1, . . ., Argn) = List: This is a higher-order call. It
returns a list of all possible solutions of call(S, Arg1, ..., Argn) in the form of
Template.

• acyclic term(Term): This predicate is true if Term is acyclic, meaning that Term
does not contain itself.

• compare terms(Term1, Term2) = Res: This function compares Term1 and Term2.
If Term1 < Term2, then this function returns −1. If Term1 == Term2, then this func-
tion returns 0. Otherwise, Term1 > Term2, and this function returns 1.

• copy term(Term1) = Term2: This function copies Term1 into Term2. If Term1 is
an attributed variable, then Term2 will not contain any of the attributes.

• different terms(Term1, Term2): This constraint ensures that Term1 and Term2

are different. This constraint is suspended when the arguments are not sufficiently instanti-
ated.

• number vars(Term, N0) = N1: This function numbers the variables in Term by
using the integers starting from N0. N1 is the next integer that is available after Term
is numbered. Different variables receive different numberings, and the occurrences of the
same variable all receive the same numbering.

• unnumber vars(Term1) = Term2: Term2 is a copy of Term1, with all numbered
variables being replaced by Picat variables. Different numbered variables are replaced by
different Picat variables.

• vars(Term) = V ars: This function returns a list of variables that occur in Term.

• variant(Term1, Term2): This predicate is true if Term2 is a variant of Term1.

• subsumes(Term1, Term2): This predicate is true if Term1 subsumes Term2.

• freeze(X, Goal): This predicate delays the evaluation of Goal until X becomes a
non-variable term.

• ground(Term): This predicate is true if Term is ground. A ground term does not contain
any variables.

34

• hash code(Term) = Int: This function returns the hash code for Term.

• parse term(String, Term, V ars, RString): This predicate uses the Picat parser
to extract a term Term from String. V ars is a list of pairs, where each pair has the form
Name=V ar. RString is the remaining string of unconsumed characters.

• parse term(String, Term, V ars): This is the same as
parse term(String, Term, V ars, []).

• parse term(String) = Term: This is the same as
parse term(String, Term, , []).

35

Chapter 4

Predicates and Functions

In Picat, predicates and functions are defined with pattern-matching rules. Picat has two types of
rules: the non-backtrackable rule

Head,Cond => Body.

and the backtrackable rule

Head,Cond ?=> Body.

Each rule is terminated by a dot (.) followed by a white space.

4.1 Predicates

A predicate defines a relation, and can have zero, one, or multiple answers. Within a predicate, the
Head is a pattern in the form p(t1, . . . , tn), where p is called the predicate name, and n is called
the arity. When n = 0, the parentheses can be omitted. The condition Cond, which is an optional
goal, specifies a condition under which the rule is applicable. Cond cannot succeed more than
once. The compiler converts Cond to once Cond if would otherwise be possible for Cond to
succeed more than once.

For a call C, if C matches the pattern p(t1, . . . , tn) and Cond is true, then the rule is said to
be applicable to C. When applying a rule to call C, Picat rewrites C into Body. If the used rule
is non-backtrackable, then the rewriting is a commitment, and the program can never backtrack to
C. However, if the used rule is backtrackable, then the program will backtrack to C once Body
fails, meaning that Body will be rewritten back to C, and the next applicable rule will be tried on
C.

A predicate is said to be deterministic if it is defined with non-backtrackable rules only, non-
deterministic if at least one of its rules is backtrackable, and globally deterministic if it is determin-
istic and all of the predicates in the bodies of the predicate’s rules are also globally deterministic.
A deterministic predicate that is not globally deterministic can still have more than one answer.

Example

append(Xs,Ys,Zs) ?=> Xs=[], Ys=Zs.
append(Xs,Ys,Zs) => Xs=[X|XsR], append(XsR,Ys,Zs).

min_max([H],Min,Max) => Min=H, Max=H.
min_max([H|T],Min,Max) =>

min_max(T,MinT,MaxT),

36

Min=min(MinT,H),
Max=max(MaxT,H).

The predicate append(Xs,Ys,Zs) is true if the concatenation of Xs and Ys is Zs. It defines
a relation among the three arguments, and does not assume directionality of any of the arguments.
For example, this predicate can be used to concatenate two lists, as in the call append([a,b],[c,d],L);
this predicate can also be used to split a list nondeterministically into two sublists, as in the call
append(L1,L2,[a,b,c,d]); this predicate can even be called with three free variables, as
in the call append(L1,L2,L3).

The predicate min max(L,Min,Max) returns two answers through its arguments. It binds
Min to the minimum of list L, and binds Max to the maximum of list L. This predicate does not
backtrack. Note that a call fails if the first argument is not a list. Also note that this predicate
consumes linear space. A tail-recursive version of this predicate that consumes constant space will
be given below.

4.2 Functions

A function is a special kind of a predicate that always succeeds with one answer. Within a function,
the Head is an equation p(t1, . . . , tn)=X , where p is called the function name, and X is an
expression that gives the return value. Functions are defined with non-backtrackable rules only.

For a call C, if C matches the pattern p(t1, . . . , tn) and Cond is true, then the rule is said to be
applicable to C. When applying a rule to call C, Picat rewrites the equation C=X ′ into (Body,
X ′=X), where X ′ is a newly introduced variable that holds the return value of C.

Picat allows inclusion of function facts in the form p(t1,. . .,tn)=Exp in function definitions.
The function fact p(t1,. . .,tn)=Exp is shorthand for the rule:

p(t1,. . .,tn)=X => X=Exp.

where X is a new variable.
Although all functions can be defined as predicates, it is preferable to define them as functions

for two reasons. Firstly, functions often lead to more compact expressions than predicates, because
arguments of function calls can be other function calls. Secondly, functions are easier to debug
than predicates, because functions never fail and never return more than one answer.

Example

qequation(A,B,C) = (R1,R2),
D = B*B-4*A*C,
D >= 0

=>
NTwoC = -2*C,
R1 = NTwoC/(B+sqrt(D)),
R2 = NTwoC/(B-sqrt(D)).

reverse([]) = [].
reverse([X|Xs]) = reverse(Xs)++[X].

The function qequation(A,B,C) returns the pair of roots of the quadratic equation A*X2+B*X+C=0.
If the discriminant B*B-4*A*C is negative, then an exception will be thrown.

The function reverse(L) returns the reversed list of L. Note that the function reverse(L)
takes quadratic time and space in the length of L. A tail-recursive version that consumes linear time
and space will be given below.

37

4.3 Patterns and Pattern-Matching

The pattern p(t1, . . . , tn) in the head of a rule takes the same form as a structure. Function calls
are not allowed in patterns. Also, patterns cannot contain index notations, dot notations, ranges,
or list comprehensions. Pattern matching is used to decide whether a rule is applicable to a call.
For a pattern P and a term T , term T matches pattern P if P is identical to T , or if P can be made
identical to T by instantiating P ’s variables. Note that variables in the term do not get instantiated
after the pattern matching. If term T is more general than pattern P , then the pattern matching can
never succeed.

Unlike calls in many committed-choice languages, calls in Picat are never suspended if they
are more general than the head patterns of the rules. A predicate call fails if it does not match the
head pattern of any of the rules in the predicate. A function call throws an exception if it does
not match the head pattern of any of the rules in the function. For example, for the function call
reverse(L), where L is a variable, Picat will throw the following exception:

unresolved function call(reverse(L)).

A pattern can contain as-patterns in the form V @Pattern, where V is a new variable in the
rule, and Pattern is a non-variable term. The as-pattern V @Pattern is the same as Pattern
in pattern matching, but after pattern matching succeeds, V is made to reference the term that
matched Pattern. As-patterns can avoid re-constructing existing terms.

Example

merge([],Ys) = Ys.
merge(Xs,[]) = Xs.
merge([X|Xs],Ys@[Y|_]) = [X|Zs], X<Y => Zs=merge(Xs,Ys).
merge(Xs,[Y|Ys]) = [Y|merge(Xs,Ys)].

In the third rule, the as-pattern Ys@[Y|] binds two variables: Ys references the second argu-
ment, and Y references the car of the argument. The rule can be rewritten as follows without using
any as-pattern:

merge([X|Xs],[Y|Ys]) = [X|Zs], X<Y => Zs=merge(Xs,[Y|Ys]).

Nevertheless, this version is less efficient, because the cons [Y|Ys] needs to be re-constructed.

4.4 Goals

In a rule, both the condition and the body are goals. Queries that the users give to the interpreter
are also goals. A goal can take one of the following forms:

• true: This goal is always true.

• fail: This goal is always false. When fail occurs in a condition, the condition is false,
and the rule is never applicable. When fail occurs in a body, it causes execution to back-
track.

• p(t1, . . . , tn): This goal is a predicate call. The arguments t1, . . . , tn are evaluated in the
given order, and the resulting call is resolved using the rules in the predicate p/n. If the
call succeeds, then variables in the call may get instantiated. Many built-in predicates are
written in infix notation. For example, X=Y is the same as ’=’(X,Y).

38

• P, Q: This goal is a conjunction of goal P and goal Q. It is resolved by first resolving
P , and then resolving Q. The goal is true if both P and Q are true. Note that the order is
important: (P , Q) is in general not the same as (Q, P).

• P; Q: This goal is a disjunction of goal P and goal Q. It is resolved by first resolving P .
If P is true, then the disjunction is true. If P is false, then Q is resolved. The disjunction is
true if Q is true. The disjunction is false if both P and Q are false. Note that a disjunction
can succeed more than once. Note also that the order is important: (P ; Q) is generally not
the same as (Q; P).

• not P : This goal is the negation of P . It is false if P is true, and true if P is false. Note
a negation goal can never succeed more than once. Also note that no variables can get
instantiated, no matter whether the goal is true or false.

• once P : This goal is the same as P , but can never succeed more than once.

• repeat: This predicate is defined as follows:

repeat ?=> true.
repeat => repeat.

The repeat predicate is often used to describe failure-driven loops. For example, the query

repeat,writeln(a),fail

repeatedly outputs ’a’ until ctrl-c is typed.

• if-then: An if-then statement takes the form

if Cond1 then
Goal1

elseif Cond2 then
Goal2
...

elseif Condn then
Goaln

else
Goalelse

end

where the elseif and else clauses are optional. If the else clause is missing, then the
else goal is assumed to be true. For the if-then statement, Picat finds the first condition
Condi that is true. If such a condition is found, then the truth value of the if-then statement
is the same as Goali. If none of the conditions is true, then the truth value of the if-then
statement is the same as Goalelse. Note that no condition can succeed more than once.

• try-catch: A try-catch statement specifies a goal to try, the exceptions that need to
be handled when they occur during the execution of the goal, and a clean-up goal that is
executed no matter whether the goal succeeds, fails, or is terminated by an exception. The
detailed syntax and semantics of the try-catch statement will be given in Chapter 6 on
Exceptions.

39

• throw Exception: This predicate throws the term Exception. This predicate will be
detailed in Chapter 6 on Exceptions.

• Loops: Picat has three types of loop statements: foreach, while, and do-while. A loop
statement is true if and only if every iteration of the loop is true. The details of loops are
given in Chapter 5.

4.5 Predicate Facts

For an extensional relation that contains a large number of tuples, it is tedious to define such a
relation as a predicate with pattern-matching rules. It is worse if the relation has multiple keys.
In order to facilitate the definition of extensional relations, Picat allows the inclusion of predicate
facts in the form p(t1,. . .,tn) in predicate definitions. Facts are translated into pattern-matching
rules before they are compiled. A predicate definition that consists of facts can be preceded by an
index declaration in the form

index (M11,M12, . . . ,M1n) . . . (Mm1,Mm2, . . . ,Mmn)

where each Mij is either + (meaning indexed) or− (meaning not indexed). For each index pattern
(Mi1,Mi2, . . . ,Min), the compiler generates a version of the predicate that indexes all of the +
arguments.

Example

index (+,-) (-,+)
edge(a,b).
edge(a,c).
edge(b,c).
edge(c,b).

The predicate edge is translated into the following rules:

edge(X,Y),nonvar(Y) =>
’edge_-+’(X,Y).

edge(X,Y),var(X) =>
throw $index_violation(edge(X,Y))$.

edge(a,Y) ?=> Y=b.
edge(a,Y) => Y=c.
edge(b,Y) => Y=c.
edge(c,Y) => Y=b.

’edge_-+’(X,b) ?=> X=a.
’edge_-+’(X,c) ?=> X=a.
’edge_-+’(X,c) => X=b.
’edge_-+’(X,b) => X=c.

Two predicates are generated. The predicate ’edge -+’ is for the second index pattern (-,+),
and the predicate edge consists of a dispatching rule (the first rule), an index-checking rule (the
second rule), and rules for the encoded facts for the index pattern (+,-). Note that this translation
favors the first index pattern, since a call never needs to be dispatched if it matches the index
pattern.

40

4.6 Tail Recursion

A rule is said to be tail-recursive if the last call of the body is the same predicate as the head. The
last-call optimization enables last calls to reuse the stack frame of the head predicate if the frame
is not protected by any choice points. This optimization is especially effective for tail recursion,
because it converts recursion into iteration. Tail recursion runs faster and consumes less memory
than non-tail recursion.

The trick to convert a predicate (or a function) into tail recursion is to define a helper that
uses an accumulator parameter to accumulate the result. When the base case is reached, the
accumulator is returned. At each iteration, the accumulator is updated. Initially, the original
predicate (or function) calls the helper with an initial value for the accumulator parameter.

Example

min_max([H|T],Min,Max) =>
min_max_helper([H|T],H,Min,H,Max).

min_max_helper([],CMin,Min,CMax,Max) => Min=CMin, Max=CMax.
min_max_helper([H|T],CMin,Min,CMax,Max) =>

min_max_helper(T,min(CMin,H),Min,max(CMax,H),Max).

reverse([]) = [].
reverse([X|Xs]) = reverse_helper(Xs,[X]).

reverse_helper([],R) = R.
reverse_helper([X|Xs],R) = reverse_helper(Xs,[X|R]).

In the helper predicate min max helper(L,CMin,Min,CMax,Max), CMin and CMax are
accumulators: CMin is the current minimum value, and CMax is the current maximum value.
When L is empty, the accumulators are returned by the unification calls Min=CMin and Max=CMax.
When L is a cons [H|T], the accumulators are updated: CMin changes to min(CMin,H), and
CMax changes to max(CMax,H). The helper function reverse helper(L,R) follows the
same idea: it uses an accumulator list to hold, in reverse order, the elements that have been scanned.
When L is empty, the accumulator is returned. When L is the cons [X|Xs], the accumulator R
changes to [X|R].

41

Chapter 5

Assignments and Loops

This chapter discusses variable assignments, loop constructs, and list comprehensions in Picat. It
describes the scope of an assigned variable, indicating where the variable is defined, and where it
is not defined. Finally, it shows how assignments, loops, and list comprehensions are related, and
how they are compiled.

5.1 Assignments

Picat variables are single-assignment, meaning that once a variable is bound to a value, the variable
cannot be bound again. In order to simulate imperative language variables, Picat provides the
assignment operator. An assignment takes the form LHS:=RHS, where LHS is either a variable
or an access of a compound value in the form X[...]. When LHS is an access in the form X[I],
the component of X indexed I is updated. This update is undone if execution backtracks over this
assignment.

Example

test => X = 0, X := X + 1, X := X + 2, write(X).

The compiler needs to give special consideration to the scope of a variable. The scope of a
variable refers to the parts of a program where a variable occurs.

Consider the test example. This example binds X to 0. Then, the example tries to bind X
to X + 1. However, X is still in scope, meaning that X is already bound to 0. Since X cannot be
bound again, the compiler must perform extra operations in order to manage assignments that use
the := operator.

In order to handle assignments, Picat creates new variables at compile time. In the test
example, at compile time, Picat creates a new variable, say X1, to hold the value of X after the
assignment X := X + 1. Picat replaces X by X1 on the LHS of the assignment. All occurrences
of X after the assignment are replaced by X1. When encountering X1 := X1 + 2, Picat creates
another new variable, say X2, to hold the value of X1 after the assignment, and replaces the
remaining occurrences of X1 by X2. When write(X2) is executed, the value held in X2, which
is 3, is printed. This means that the compiler rewrites the above example as follows:

test => X = 0, X1 = X + 1, X2 = X1 + 2, write(X2).

5.1.1 If-Else

This leads to the question: what does the compiler do if the code branches? Consider the following
code skeleton.

42

Example

if_ex(Z) =>
X = 1, Y = 2,
if Z > 0 then

X := X * Z
else

Y := Y + Z
end,
println([X,Y]).

The if ex example performs exactly one assignment. At compilation time, the compiler
does not know whether or not Z>0 evaluates to true. Therefore, the compiler does not know
whether to introduce a new variable for X or for Y.

Therefore, when an if-else statement contains an assignment, the compiler rewrites the if-else
statement as a predicate. For example, the compiler rewrites the above example as follows:

if_ex(Z) =>
X = 1, Y = 2,
p(X, Xout, Y, Yout, Z),
println([Xout,Yout]).

p(Xin, Xout, Yin, Yout, Z), Z > 0 =>
Xout = X * Z,
Yout = Yin.

p(Xin, Xout, Yin, Yout) =>
Xout = Xin,
Yout = Y - Z.

One rule is generated for each branch of the if-else statement. For each variable V that occurs on
the LHS of an assignment statement that is inside of the if-else statement, predicate p is passed
two arguments, Vin and Vout. In the above example, X and Y each occur on the LHS of an
assignment statement. Therefore, predicate p is passed the parameters Xin, Xout, Yin, and
Yout.

5.2 Types of Loops

Picat has three types of loop statements for programming repetitions: foreach, while, and
do-while.

5.2.1 Foreach Loops

A foreach loop has the form:

foreach (E1 in D1, Cond1, . . ., En in Dn, Condn)
Goal

end

Each Ei is an iterating pattern. Each Di is an expression that gives a compound value. Each
Condi is an optional condition on iterators E1 through Ei.

Foreach loops can be used to iterate through compound values, as in the following examples.

43

Example

loop_ex1 =>
L = [17, 3, 41, 25, 8, 1, 6, 40],
foreach (I in L)

println(I)
end.

loop_ex2 =>
foreach(Key=Value in Map)

writef("%w=%w\n", Key, Value)
end.

The loop ex1 example iterates through a list. The loop ex2 example iterates through a
map, where Key=Value is the iterating pattern.

The loop ex1 example can also be written, using a failure-driven loop, as follows.

Example

loop_ex1 =>
L = [17, 3, 41, 25, 8, 1, 6, 40],
(member(I, L),

println(I),
fail

;
true

).

Recall that the range Start..Step..End stands for a list of numbers. Ranges can be used as
compound values in iterators.

Example

loop_ex3 =>
foreach(I in 1 .. 2 .. 9)

println(I)
end.

Also recall that the function zip(List1, List2, . . ., Listn) returns a list of tuples. This
function can be used to simultaneously iterate over multiple lists.

Example:

loop_ex_parallel =>
foreach(Pair in zip(1..2, [a,b]))

println(Pair)
end.

5.2.2 Foreach Loops with Multiple Iterators

Each of the previous examples uses a single iterator. Foreach loops can also contain multiple
iterators.

44

Example:

loop_ex4 =>
L = [2, 3, 5, 10],
foreach(I in L, J in 1 .. 10, J mod I != 0)

printf("%d is not a multiple of %d%n", J, I)
end.

If a foreach loop has multiple iterators, then it is compiled into a series of nested foreach
loops in which each nested loop has a single iterator. In other words, a foreach loop with multiple
iterators executes its goal once for every possible combination of values in the iterators.

The foreach loop in loop ex4 is the same as the nested loop:

loop_ex5 =>
L = [2, 3, 5, 10],
foreach(I in L)

foreach(J in 1..10)
if J mod I != 0 then

printf("%d is not a multiple of %d%n", J, I)
end

end
end.

5.2.3 While Loops

A while loop has the form:

while (Cond)
Goal

end

As long as Cond succeeds, the loop will repeatedly execute Goal.

Example:

loop_ex6 =>
I = 1,
while (I <= 9)

println(I),
I := I + 2

end.

loop_ex7 =>
J = 6,
while (J <= 5)

println(J),
J := J + 1

end.

loop_ex8 =>
E = read_int(),
while (E mod 2 == 0; E mod 5 == 0)

45

println(E),
E := read_int()

end.

loop_ex9 =>
E = read_int(),
while (E mod 2 == 0, E mod 5 == 0)

println(E),
E := read_int()

end.

The while loop in loop ex6 prints all of the odd numbers between 1 and 9. It is similar to
the foreach loop

foreach(I in 1 .. 2 .. 9)
println(I)

end.

The while loop in loop ex7 never executes its goal. J begins at 6, so the condition J <= 5
is never true, meaning that the body of the loop does not execute.

The while loop in loop ex8 demonstrates a compound condition. The loop executes as long
as the value that is read into E is either a multiple of 2 or a multiple of 5.

The while loop in loop ex9 also demonstrates a compound condition. Unlike in loop ex8,
in which either condition must be true, in loop ex9, both conditions must be true. The loop
executes as long as the value that is read into E is both a multiple of 2 and a multiple of 5.

5.2.4 Do-while Loops

A do-while loop has the form:

do
Goal

while (Cond)

A do-while loop is similar to a while loop, except that a do-while loop executes Goal one time
before testing Cond. The following example demonstrates the similarities and differences between
do-while loops and while loops.

Example

loop_ex10 =>
J = 6,
do

println(J),
J := J + 1

while (J <= 5).

Unlike loop ex7, loop ex10 executes its body once. Although J begins at 6, the do-while
loop prints J, and increments J before evaluating the condition J <= 5.

46

5.3 List Comprehensions

A list comprehension is a special functional notation for creating lists. List comprehensions have
a similar format to foreach loops.

[T : E1 in D1, Cond1, . . ., En in Dn, Condn]

T is an expression. Each Ei is an iterating pattern. Each Di is an expression that gives a compound
value. Each Condi is an optional condition on iterators E1 through Ei.

Example

picat> L = [(A, I) : A in [a, b], I in 1 .. 2].
L = [(a, 1), (a, 2), (b, 1), (b, 2)]

5.4 Compilation of Loops

Variables that occur in a loop, but do not occur before the loop in the outer scope, are local to each
iteration of the loop. For example, in the rule

p(A) =>
foreach (I in 1 .. A.length)

E = A[I],
println(E)

end.

the variables I and E are local, and each iteration of the loop has its own values for these variables.
Consider the example:

Example

while_test(N) =>
I = 1,
while (I <= N)

I := I + 1,
println(I)

end.

In this example, the while loop contains an assignment statement. As mentioned above, at compi-
lation time, Picat creates new variables in order to handle assignments. One new variable is created
for each assignment. However, when this example is compiled, the compiler does not know the
number of times that the body of the while loop can be executed. This means that the compiler
does not know how many times the assignment I := I + 1 will occur, and the compiler is
unable to create new variables for this assignment. In order to solve this problem, the compiler
compiles while loops into tail-recursive predicates.

In the while test example, the while loop is compiled into:

while_test(N) =>
I = 1,
p(I, N).

p(I, N), I <= N =>

47

I1 = I + 1,
println(I1),
p(I1, N).

p(_, _) => true.

Note that the first rule of the predicate p(I, N) has the same condition as the while loop.
The second rule, which has no condition, terminates the while loop, because the second rule is only
executed if I > N. The call p(I1, N) is the tail-recursive call, with I1 storing the modified
value.

Suppose that a while loop modifies a variable that is then used outside of the while loop. For
each modified variable V that is used after the while loop, predicate p is passed two arguments, Vin
and Vout. Then, a predicate that has the body true is not sufficient to terminate the compiled
while loop. Instead, a predicate fact must be used, as in the next example.

The next example demonstrates a loop that has multiple accumulators, and that modifies values
which are then used outside of the loop.

Example

min_max([H|T], Min, Max) =>
LMin = H,
LMax = H,
foreach (E in T)

LMin := min(LMin, E),
LMax := max(LMax, E)

end,
Min = LMin,
Max = LMax.

This loop finds the minimum and maximum values of a list. The loop is compiled to:

min_max([H|T], Min, Max) =>
LMin = H,
LMax = H,
p(T, LMin, LMin1, LMax, LMax1),
Min = LMin1,
Max = LMax1.

p([], MinIn, MinOut, MaxIn, MaxOut) =>
MinOut = MinIn,
MaxOut= MaxIn.

p([E|T], MinIn, MinOut, MaxIn, MaxOut) =>
Min1 = min(MinIn, E),
Max1 = max(MaxIn, E),
p(T, Min1, MinOut, Max1, MaxOut).

Notice that there are multiple accumulators: MinIn and MaxIn. Since the min max predicate
returns two values, the accumulators each have an “in” variable (MinIn and Maxin) and an
“out” variable (MinOut and MaxOut). If the first parameter of predicate p is an empty list, then
MinOut is set to the value of MinIn, and MaxOut is set to the value of MaxIn.

Foreach and do-while loops are compiled in a similar manner to while loops.

48

Nested Loops

As mentioned above, variables that only occur within a loop are local to each iteration of the
loop. In nested loops, variables that are local to the outer loop are global to the inner loop. In
other words, if a variable occurs in the outer loop, then the variable also visible in the inner loop.
However, variables that are local to the inner loop do not occur earlier, in the outer loop.

For example, consider the nested loops:

nested =>
foreach (I in 1 .. 10)

printf("Numbers between %d and %d", I, I * I),
foreach (J in I .. I * I)

printf("%d ", J)
end,
println()

end.

Variable I is local to the outer foreach loop, and is global to the inner foreach loop. Therefore,
iterator J is able to iterate from I to I * I in the inner foreach loop. Iterator J is local to the
inner loop, and does not occur in the outer loop.

Since a foreach loop with N iterators is converted into N nested foreach loops, the order of the
iterators matters.

5.4.1 List Comprehensions

List comprehensions are compiled into foreach loops.

Example

comp_ex =>
L = [(A, X) : A in [a, b], X in 1 .. 2].

This list comprehension is compiled to:

comp_ex =>
List = L,
foreach (A in [a, b], X in 1 .. 2)

L = [(A, X) | T],
L := T

end,
L = [].

Example

make_list1 =>
L = [Y : X in 1..5],
write(L).

make_list2 =>
Y = Y,
L = [Y : X in 1..5],
write(L).

49

Suppose that a user would like to create a list [Y, Y, Y, Y, Y]. The make list1 predicate
incorrectly attempts to make this list; instead, it outputs a list of 5 different variables since Y is
local. In order to make all five variables the same, make list2 makes variable Y global, by
adding the line Y = Y to globalize Y.

50

Chapter 6

Exceptions

An exception is an event that occurs during the execution of a program. An exception requires a
special treatment. In Picat, an exception is just a term. A built-in exception is a structure, where
the name denotes the type of the exception, and the arguments provide other information about the
exception, such as the source, which is the goal or function that raised the exception.

6.1 Built-in Exceptions

A built-in exception is one of the following:

• divide by zero(Source): Source divides a number by zero.

• file not found(EArg,Source): Source tries to open a file named EArg that does
not exist.

• function not found(FName,Source): Source tries to call a function that is not
defined in the imported modules, where Source is a higher-order call in which names cannot
be completely bound to definitions at compile time.

• interrupt(Source): The execution is interrupted by a signal. For an interrupt caused
by ctrl-c, Source is keyboard.

• io error(ENo,EMsg,Source): An I/O error with the number ENo and message
EMsg occurs in Source.

• key not found(Key,Source): Source tries to access a map or an attributed variable
with a Key that does not exist.

• load error(FName,Source): An error occurs while loading the byte-code file named
FName. This error is caused by the malformatted byte-code file.

• out of memory(Area): The system runs out of memory while expanding Area, which
can be: stack heap, trail, program, table, or findall.

• out of range(EIndex,Source): Source tries to access an element of a compound
value using the index EIndex, which is out of range. An index is out of range if it is less
than or equal to zero, or if it is greater than the length of the compound value.

• predicate not found(PredName,Source): Source tries to call a predicate that is
not defined in the imported modules, where Source is a higher-order call in which names
cannot be completely bound to definitions at compile time.

51

• syntax error(String,Source): String cannot be parsed into a value that is expected
by Source. For example, read int() throws this exception if it reads in a string "a"
rather than an integer, and parse term("a()") also throws this exception, because the
string "a()" is not a valid term.

• unresolved function call(FCall): No rule is applicable to the function call FCall.

• Type expected(EArg,Source): The argument EArg in Source is not an expected
type or value, where Type can be var, nonvar, dvar, atom, integer, real, number,
list, map, etc.

6.2 Throwing Exceptions

The built-in predicate throw Exception throws Exception. After an exception is thrown, the
system searches for a handler for the exception. If none is found, then the system displays the
exception and aborts the execution of the current query. It also prints the backtrace of the stack
if it is in debug mode. For example, for the function call open("abc.txt"), the following
message will be displayed if there is no file that is named "abc.txt".

*** error file_not_found("abc.txt",open("abc.txt"))

6.3 Defining Exception Handlers

The try statement, which takes the following form, is provided for defining exception handlers:

try
Goal

catch (Pattern1)
Handler1

...
catch (Patternn)

Handlern
finally

Handlerfin
end

The catch clauses and the finally clause are optional. However, the finally clause is
mandated if there is no catch clause, and there must be at least one catch clause if there is
no finally clause. Each Patterni is a term pattern, like the head of a rule, and each handler
is a goal. For an exception, a catch clause is said to be applicable if the exception matches the
pattern of the clause. When an exception is thrown during the execution of Goal, Picat walks along
the chain of ancestor calls of the thrower of the exception until it finds an ancestor that is wrapped
inside a try statement. For the try statement, Picat searches for the first applicable catch
clause and executes the handler. If no catch clause exists, or no catch clause is applicable
to the exception, then Handlerfin is executed before the exception is re-thrown. The finally
clause is always executed, if it exists. It is executed when Goal terminates with an exception, and
it is executed when Goal finishes its normal execution. This means that the finally clause is
executed when Goal succeeds deterministically with no choice points left behind, and when Goal
fails. For example,

52

try
S = open(File),
process(S)

catch (E)
writeln(E)

finally
close(S).

The finally clause specifies a clean-up action for the try goal.

53

Chapter 7

Tabling

The Picat system is a term-rewriting system. For a predicate call, Picat selects a matching rule
and rewrites the call into the body of the rule. For a function call C, Picat rewrites the equation
C = X where X is a variable that holds the return value of C. Due to the existence of recursion in
programs, the term-rewriting process may never terminate. Consider, for example, the following
program:

reach(X,Y) ?=> edge(X,Y).
reach(X,Y) => reach(X,Z),edge(Z,Y).

where the predicate edge defines a relation, and the predicate reach defines the transitive closure
of the relation. For a query such as reach(a,X), the program never terminates due to the
existence of left-recursion in the second rule. Even if the rule is converted to right-recursion, the
query may still not terminate if the graph that is represented by the relation contains cycles.

Another issue with recursion is redundancy. Consider the following problem: Starting in the
top left corner of a N ×N grid, one can either go rightward or downward. How many routes are
there through the grid to the bottom right corner? The following gives a program in Picat for the
problem:

route(N,N,_Col) = 1.
route(N,_Row,N) = 1.
route(N,Row,Col) = route(N,Row+1,Col)+route(N,Row,Col+1).

The function call route(20,1,1) returns the number of routes through a 20×20 grid. The
function call route(N,1,1) takes exponential time in N, because the same function calls are
repeatedly spawned during the execution, and are repeatedly resolved each time that they are
spawned.

7.1 Table Declarations

Tabling is a memoization technique that can prevent infinite loops and redundancy. The idea
of tabling is to memorize the answers to subgoals and use the answers to resolve their variant
descendants. In Picat, in order to have all of the calls and answers of a predicate or function
tabled, users just need to add the keyword table before the first rule.

Example

table
reach(X,Y) ?=> edge(X,Y).

54

reach(X,Y) => reach(X,Z),edge(Z,Y).

table
route(N,N,_Col) = 1.
route(N,_Row,N) = 1.
route(N,Row,Col) = route(N,Row+1,Col)+route(N,Row,Col+1).

With tabling, all queries to the reach predicate are guaranteed to terminate, and the function call
route(N,1,1) takes only N2 time.

For some problems, such as planning problems, it is infeasible to table all answers, because
there may be an infinite number of answers. For some other problems, such as those that require
the computation of aggregates, it is a waste to table non-contributing answers. Picat allows users
to provide table modes to instruct the system about which answers to table. For a tabled predicate,
users can give a table mode declaration in the form (M1,M2, . . . ,Mn), where each Mi is one
of the following: a plus-sign (+) indicates input, a minus-sign (-) indicates output, max indicates
that the corresponding variable should be maximized, and min indicates that the corresponding
variable should be minimized. Input arguments are assumed to be ground. Output arguments,
including min and max arguments, are assumed to be variables. An argument with the mode min
or max is called an objective argument. Only one argument can be an objective to be optimized.
As an objective argument can be a compound value, this limit is not essential, and users can still
specify multiple objective variables to be optimized. When a table mode declaration is provided,
Picat tables only one optimal answer for the same input arguments.

Example

table(+,+,-,min)
shortest_path(X,Y,Path,W) ?=>

Path = [(X,Y)],
edge(X,Y,W).

shortest_path(X,Y,Path,W) =>
Path = [(X,Z)|Path1],
edge(X,Z,W),
shortest_path(Z,Y,Path1,W1),
W = W+W1.

The predicate edge(X,Y,W) specifies a weighted directed graph, where W is the weight of
the edge between node X and node Y. The predicate shortest path(X,Y,Path,W) states
that Path is a path from X to Y with the minimum weight W. Note that whenever the predicate
shortest path/4 is called, the first two arguments must always be instantiated. For each pair,
the system stores only one path with the minimum weight.

The following program finds a shortest path among those with the minimum weight for each
pair of nodes:

table (+,+,-,min).
sp(X,Y,[(X,Y)],Path,O) ?=>

Path = [(X,Y)],
O = (Wxy,1),
edge(X,Y,Wxy).

sp(X,Y,Path,O) =>
Path = [(X,Z)|Path1],

55

edge(X,Z,Wxz),
shortest_path(Z,Y,Path1,O1),
O1 = (Wzy,Len1),
O = (Wxz+Wzy,Len1+1).

For each pair of nodes, the pair of variables (W,Len) is minimized, where W is the weight, and
Len is the length of a path. The built-in function compare terms(T1,T2) is used to compare
answers. Note that the order is important. If the term would be (Len,W), then the program would
find a shortest path, breaking a tie by selecting one with the minimum weight.

Example

The program shown in Figure 7.1 solves the Farmer’s problem: The farmer wants to get his goat,
wolf, and cabbage to the other side of the river. His boat isn’t very big, and it can only carry him
and either his goat, his wolf, or his cabbage. If he leaves the goat alone with the cabbage, then
the goat will gobble up the cabbage. If he leaves the wolf alone with the goat, then the wolf will
gobble up the goat. When the farmer is present, the goat and cabbage are safe from being gobbled
up by their predators.

7.2 The Tabling Mechanism

The Picat tabling system employs the so-called linear tabling mechanism, which computes fix-
points by iteratively evaluating looping subgoals. The system uses a data area, called the table
area, to store tabled subgoals and their answers. It relies on the following three primitive opera-
tions to access and update the table area.

Subgoal lookup and registration: This operation is used when a tabled subgoal is encountered
during execution. It looks up the subgoal table to see if there is a variant of the subgoal.
If not, it inserts the subgoal (termed a pioneer or generator) into the subgoal table. It also
allocates an answer table for the subgoal and its variants. Initially, the answer table is empty.
If the lookup finds that there already is a variant of the subgoal in the table, then the record
that is stored in the table is used for the subgoal (called a consumer). Generators and con-
sumers are handled differently. In linear tabling, a generator is resolved using rules, and a
consumer is resolved using answers; a generator is iterated until the fixed point is reached,
and a consumer fails after it exhausts all of the existing answers.

Answer lookup and registration: This operation is executed when a rule succeeds in generating
an answer for a tabled subgoal. If a variant of the answer already exists in the table, then
it does nothing; otherwise, it inserts the answer into the answer table for the subgoal, or
it tables the answer according to the mode declaration. Picat uses the lazy consumption
strategy (also called the local strategy). After an answer is processed, the system backtracks
to produce the next answer.

Answer return: When a consumer is encountered, an answer is returned immediately, if an an-
swer exists. On backtracking, the next answer is returned. A generator starts consuming
its answers after it has exhausted all of its rules. Under the lazy consumption strategy, a
top-most looping generator does not return any answer until it is complete.

7.3 Primitives on Tables

• initialize table: This predicate initializes the table area.

56

go =>
state(s,s,s,s,Path,_),
writeln([(s,s,s,s)|Path]).

table (+,+,+,+,-,min)
state(n,n,n,n,Path,Len) => Path=[], Len=0.
state(F,W,G,C,_Path,_Len), not safe(F,W,G,C) => fail.
state(F,F,G,C,Path,Len) ?=>

Path=[(F1,F1,G,C)|Path1],
opposite(F,F1),
state(F1,F1,G,C,Path1,Len1),
Len = Len1+1.

state(F,W,F,C,Path,Len) ?=>
Path=[(F1,W,F1,C)|Path1],
opposite(F,F1),
state(F1,W,F1,C,Path1,Len1),
Len = Len1+1.

state(F,W,G,F,Path,Len) ?=>
Path=[(F1,W,G,F1)|Path1],
opposite(F,F1),
state(F1,W,G,F1,Path1,Len1),
Len = Len1+1.

state(F,W,G,C,Path,Len) =>
Path=[(F1,W,G,C)|Path1],
opposite(F,F1),
state(F1,W,G,C,Path1,Len1),
Len = Len1+1.

index (+,-) (+,+)
opposite(n,s).
opposite(s,n).

safe(F,W,F,C) => true.
safe(F,F,G,F) =>

opposite(F,G).

Figure 7.1: A program for the Farmer’s problem.

57

• table get all(Goal) = List: This function returns a list of answers of the subgoals
that are subsumed by Goal. For example, the table get all() fetches all of the an-
swers in the table, since any subgoal is subsumed by the anonymous variable.

• table get one(Goal): If there is a subgoal in the subgoal table that is a variant of Goal,
and that has answers, then Goal is unified with the first answer. This predicate fails if there
is no variant subgoal in the table, or if there is no answer available.

58

Chapter 8

Modules

A module is a bundle of predicate and function definitions that are stored in one file. A module
forms a name space. Two definitions can have the same name if they reside in different modules.
Because modules avoid name clashes, they are very useful for managing source files of large
programs.

8.1 Module and Import Declarations

In Picat, source files must have the extension name ".pi". A module is a source file that begins
with a module name declaration in the form:

module Name.

where Name must be the same as the main file name. A module can be spread across multiple
files. In that case, only the file Name.pi will have an the module declaration module Name.
Furthermore, Name.piwill have an include statement, listing the other files that contain parts
of the module. For example, the file basic.pi has the following content:

module basic.
include "basic_list.pi", "basic_array.pi",

"basic_map.pi", "basic_term.pi", "basic_io.pi".

The file basic.pi does not define any predicates or functions, but it includes a bunch of other
source files. None of the included files has a module declaration. Note that the file names in the
include statement are strings, and are not atoms. Also note that the paths of the included files
must be relative to the file that contains the include statement.

A file that does not begin with a module declaration is assumed to belong to the default global
module.

In order to use symbols that are defined in another module, users must explicitly import them
with an import declaration in the form:

import Name1, . . ., Namen.

where each imported Namei is one of the following items:

• A module name M . All of the public predicate and function symbols of module M are
visible to the importing module.

• M.S/N where M is a module name, S is a symbol, and N is an arity. The symbol S/N of
module M is visible.

59

• M.S where M is a module name, and S is a symbol. If M contains several versions of S
with different arities, then all of the versions are visible.

For each imported item, the compiler first searches for a module for the item in the search path
that is specified by the environment variable PICATPATH. If the imported item is in the form of
M.S or M.S/N , the compiler also searches for a definition of the symbol S in the module. If no
module or definition is found, the compiler gives an error message. The global module is imported
by default. Symbols that are defined in the global module cannot be redefined.

The import relation is not transitive. Suppose that there are three modules: A, B, and C. If A
imports B and B imports C, then A still needs to import C in order to reference C’s symbols.

The built-in command load("xxx") compiles the file xxx.pi and loads the generated
code into the interpreter. The generated bytecode is stored in a file named xxx.qi in the same
path as the source file. The load command also imports the public symbols defined in the module
to the interpreter. This allows users to use these symbols on the command line without explicitly
importing the symbols. If the file xxx.pi imports modules, those module files will be compiled
and loaded when necessary.

8.2 Binding Calls to Definitions

The Picat system has a global symbol table for atoms, a global symbol table for structure names,
and a global symbol table for modules. For each module, Picat maintains a symbol table for the
public predicate and function symbols defined in the module. Private symbols that are defined in a
module are compiled away, and are never stored in the symbol table. While predicate and function
symbols can be local to a module, atoms and structures are always global.

The Picat module system is static, meaning that the binding of normal (or none-higher-order)
calls to their definitions takes place at compile time. For each call, the compiler first searches the
enclosing module and the global module for a definition that has the same name as the call. If no
definition is found, then the compiler searches for a definition in the list of imported items. The
compiler searches the items in the order that they were imported.” If no definition is found in any
of these modules, then the compiler will issue an warning.1

It is possible for two imported modules to contain different definitions that have the same name.
When multiple names match a call, the order of the imported items determines which definition is
used. Picat allows users to use qualified names to explicitly select a definition. A module-qualified
call is a call preceded by a module name and ’.’ without intervening whitespace.

Example

% qsort.pi
module qsort.

sort([]) = [].
sort([H|T]) = sort([E : E in T, E=<H])++[H]++sort([E : E in T, E>H]).

% isort.pi
module isort.

sort([]) = [].
sort([H|T]) = insert(H,sort(T)).

1A warning is issued instead of an error. This allows users to test incomplete programs with missing definitions.

60

private
insert(X,[]) = [X].
insert(X,[Y|Ys]) = Zs, X=<Y => Zs=[X,Y|Ys].
insert(X,[Y|Ys]) = [Y|insert(X,Ys)].

The module qsort.pi defines a function named sort using quick sort, and the module isort
defines a function of the same name using insertion sort. In the following session, both modules
are used.

picat> load("qsort")
picat> load("isort")
picat> L=sort([2,1,3])
L = [1,2,3]
picat> L=qsort.sort([2,1,3])
L = [1,2,3]
picat> L=isort.sort([2,1,3])
L = [1,2,3]

As qsort is loaded before isort, the sort function defined in qsort is used for the command
L=sort([2,1,3]).

Module names are just atoms. Consequently, it is possible to bind a variable to a module name.
Nevertheless, in a module-qualified call M.C, the module name can never be a variable. Recall
that the dot notation is also used to access attributes and to call predicates and functions. The
notation M.C is treated as a call or an attribute if M is not an atom, or if M is an atom that is not
a module name.

Suppose that users want to define a function named generic sort(M,L) that sorts list L
using the sort function defined in module M. Users cannot just call M.sort(L), since M is a
variable. Users can, however, select a function based on the value held in M by using function facts
as follows:

generic_sort(qsort,L) = qsort.sort(L).
generic_sort(isort,L) = isort.sort(L).

8.3 Accessing Attributes of Modules

A function with no argument that is defined with one function fact in a module is called an attribute
of the module. For example, the math module contains a function named pi, where

pi=3.14159.

The advantage of treating no-arg functions as attribute-value pairs is that users can use the dot
notation to access values. For example, users can use math.pi to retrieve the value that is
associated with pi in the module math.

Users can use no-argument functions in order to simulate C-style enum types.

Example

module color.

black = 0.

61

red = 1.
blue = 2.
green = 3.
white = 4.
cyan = 5.
yellow = 6.
magenta = 7.

For a color, say red, users can retrieve the integer that is associated with it by using color.red.
Note that a dot notation is an expression, but is not a valid term. Therefore, a dot notation cannot
occur in a head pattern.

8.4 Binding Higher-Order Calls

Because Picat forbids variable module qualifiers and terms in dot notations, it is impossible to
create module-qualified higher-order terms. For a higher-order call, if the compiler knows the
name of the higher-order term, as in findall(X,member(X,L)), then it searches for a def-
inition for the name, just like it does for a normal call. However, if the name is unknown, as in
apply(F,X,Y), then the compiler generates code to search the enclosing module and the im-
ported modules for a definition at runtime. As private symbols are compiled away at compile time,
higher-order terms can never reference private symbols. Due to the overhead of runtime search,
the use of higher-order calls is discouraged.

8.5 Library Modules

Picat comes with a library of standard modules, described in separate chapters. The function
sys.modules() returns a list of modules that are in the search path PICATPATH.

62

Chapter 9

I/O

Picat has an io module for reading input from files and writing output to files.
The iomodule contains functions and predicates that read from a file, write to a file, reposition

the read/write pointer within a file, redirect input and output, and create temporary files and pipes.
The io module uses file descriptors to read input from files, and to write output to files. A

file descriptor is a structure that encodes file descriptor data, including an index in a file descriptor
table that stores information about opened files. The following example reads data from one file,
and writes the data into another file.

Example

import io.

rw =>
Reader = open("input_file.txt"),
Writer = open("output_file.txt", write),
L = fread_line(Reader),
while (L != eof)

fprintln(Writer, L),
flush(Writer),
L := fread_line(Reader)

end,
close(Reader),
close(Writer).

9.1 Opening a File

There are two functions for opening a file. Both of them are used in the previous example.

• open(Name) = FD: The Name parameter is a filename that is represented as a string.
This function opens the file with a default read mode.

• open(Name, Mode) = FD: The Mode parameter is one of the four atoms: read,
write, append, or create. The read atom is used for reading from a file; if the file
does not exist, or the program tries to write to the file, then the program will throw an error.
The write atom is used for reading from a file and writing to a file; if the file already
exists, then the file will be overwritten. The append atom is similar to the write atom;
however, if the file already exists, then data will be appended at the end of the pre-existing

63

file. The create atom is also used to create a new file for both reading and writing; if the
file already exists, then the program will throw an error.

9.2 Reading from a File

The io module has at least one function for reading data into each primitive data type. It also has
functions for reading unicode characters, tokens, strings, and bytes. Recall that strings are stored
as lists of single-character atoms.

The fread functions in the io module take a file descriptor as the first parameter. This file
descriptor is the same descriptor that the open function returns.

• fread int(FD) = Int: This function reads a single integer from the file that is repre-
sented by FD.

• fread real(FD) = Real: This function reads a single real number from the file that
is represented by FD.

• fread char(FD) = V al: This function reads a single character, whose byte size de-
pends on the current system, from the file that is represented by FD.

• fread char(FD, N) = String: This function reads up to N characters, whose byte
size depends on the current system, from the file that is represented by FD. It returns a
string that contains the characters that were read.

• fread unicode char(FD) = V al: This function reads a single Unicode character
from the file that is represented by FD.

• fread unicode char(FD, N) = String: This function reads up to N Unicode
characters from the file that is represented by FD. It returns a string that contains Unicode
characters that were read.

• fread token(FD) = String: This function reads a single Picat token from the file
that is represented by FD.

• fread term(FD) = Term: This function reads a single Picat term from the file that
is represented by FD. The term must be followed by a dot ‘.’ and at least one whitespace
character. This function consumes the dot symbol. The whitespace character is not stored
in the returned string.

• fread line(FD) = String: This function reads a string from the file that is repre-
sented by FD, stopping when either a newline (‘\r\n’ on Windows, and ‘\n’ on Unix) is
read, or the eof atom is returned. The newline is not stored in the returned string.

• freadln(FD) = String: This function does the same thing as fread line.

• fread byte(FD) = V al: This function reads a single byte from the file that is repre-
sented by FD.

• fread byte(FD, N) = List: This function reads up to N bytes from the file that is
represented by FD. It returns the list of bytes that were read.

• fread file chars(FD) = String: This function reads an entire character file into
a string. The next function that tries to read from the same file will return eof, unless the
read/write pointer is repositioned or the file is modified.

64

• fread file bytes(FD) = List: This function reads an entire byte file into a list.
The next function that tries to read from the same file will return eof, unless the read/write
pointer is repositioned or the file is modified.

There are cases when the fread char(FD, N), fread unicode char(FD, N),
and fread byte(FD, N) functions will read fewer than N values. One case occurs when
the end of the file is encountered. Another case occurs when reading from a pipe. If a pipe is
empty, then the fread functions wait until data is written to the pipe. As soon as the pipe has
data, the fread functions read the data. If a pipe has fewer than N values when a read occurs,
then these three functions will return a string that contains all of the values that are currently in the
pipe, without waiting for more values. In order to determine the actual number of elements that
were read, after the functions return, use length(List) to check the length of the list that was
returned.

The io module also has functions that peek at the next value in the file without changing the
current file location. This means that the next fread or peek function will return the same value,
unless the read/write pointer is repositioned or the file is modified.

• peek int(FD) = Int

• peek real(FD) = Real

• peek char(FD) = V al

• peek unicode char(FD) = V al

• peek byte(FD) = V al

9.2.1 End of File

The end of a file is detected through the eof atom. If the input function returns a single value, and
the read/write pointer is at the end of the file, then the eof atom is returned. If the input function
returns a list, then the end-of-file behavior is more complex. If no other values have been read into
the list, then the eof atom is returned. However, if other values have already been read into the
list, then reaching the end of the file causes the function to return the list, and the eof atom will
not be returned until the next input function is called.

Instead of checking for eof, the at end of stream predicate can be used to monitor a file
descriptor for the end of a file.

• at end of stream(FD): The at end of stream predicate is demonstrated in the
following example.

Example

import io.

rw =>
Reader = open("file1.txt"),
Writer = open("file2.txt", write),
while (not at_end_of_stream(Reader))

L := fread_line(Reader),
fprintln(Writer, L),
flush(Writer)

65

end,
close(Reader),
close(Writer).

The advantage of using the at end of stream predicate instead of using the eof atom is
that at end of stream immediately indicates that the end of the file was reached, even if the
last read function read values into a list. In the first example in this chapter, which used the
eof atom, an extra fread line function was needed before the end of the file was detected. In
the above example, which used at end of stream, fread line was only called if there was
data remaining to be read.

9.3 Writing to a File

The fwrite and fprint predicates take a file descriptor as the first parameter. The file descrip-
tor is the same descriptor that the open function returns.

• fwrite(FD, Term): This predicate writes Term to a file. Single-character lists are
treated as strings. Strings are double-quoted, and atoms are single-quoted when necessary.
This predicate does not print a newline, meaning that the next write will begin on the same
line.

• fwrite byte(FD, Bytes): This predicate writes a single byte or a list of bytes to a
file.

• fwriteln(FD, Term): This predicate prints a newline, meaning that the next write
will begin on the next line.

• fwritef(FD, Format, Args . . .): This predicate is used for formatted writing, where
the Format parameter contains format characters that indicate how to print each of the ar-
guments in the Args parameter.

Note that these predicates write both primitive values and compound values.
The fwritef predicate includes a parameter that specifies the string that is to be formatted.

The Format parameter is a string that contains format characters. Format characters take the form
%[flags][width][.precision]specifier. Only the percent sign and the specifier are
mandatory. Flags can be used for justification and padding. The width is the minimum number of
characters that are to be printed. The precision is the number of characters that are to be printed
after the number’s radix point. Note that the width includes all characters, including the radix
point and the characters that follow it. The specifier indicates the type of data that is to be written.
A specifier can be one of the C format specifiers %%, %c, %d, %e, %E, %f, %g, %G, %i, %o, %s,
%u, %x, and %X. In addition, Picat uses the specifier %n for newlines, and uses %w for terms. For
details, see Appendix E.

Example

import io.

formatted_print =>
FD = open("birthday.txt"),
Format1 = "Hello, %s. Happy birthday! ",
Format2 = "You are %d years old today. ",
Format3 = "That is %.2f%% older than you were last year",

66

fwritef(FD, Format1, "Bob"),
fwritef(FD, Format2, 7),
fwritef(FD, Format3, 7.0 / 6.0),
close(FD).

This writes “Hello, Bob. Happy birthday! You are 7 years old today.
That is 1.17% older than you were last year”.

The io module also has the three fprint predicates.

• fprint(FD, Term): This predicate writes Term to a file. Unlike the fwrite predi-
cates, the fprint predicates do not place quotes around strings and atoms.

• fprintln(FD, Term)

• fprintf(FD, Format, Args . . .): This predicate is the same as fwritef, except
that fprintf uses fprint to display the arguments in the Args parameter, while fwritef
uses fwrite to display the arguments in the Args parameter.

The following example demonstrates the differences between the write and print predi-
cates. It uses the write and print predicates from the basic module.

Example

picat> write("abc")
"abc"
picat> write([a,b,c])
"abc"
picat> write(’a@b’)
’a@b’
picat> writef("%w %s%n",[a,b,c],"abc")
"abc" "abc"
picat> print("abc")
abc
picat> print([a,b,c])
abc
picat> print(’a@b’)
a@b
picat> printf("%w %s%n",[a,b,c],"abc")
abc abc

9.4 Flushing and Closing a File

The io module has one predicate to flush a file stream, and one predicate to close a file stream.

• flush(FD): This predicate causes all buffered data to be written without delay.

• close(FD): This predicate causes the file to be closed, releasing the file’s resources, and
removing the file from the file descriptor table. Any further attempts to write to the file
descriptor without calling open will cause an error to be thrown.

67

9.5 Repositioning I/O Pointers Within Files

Sometimes, sequential file access is not enough. Picat provides functions and predicates that allow
a program to access and to modify its current location in a file. These built-ins are demonstrated
in the following example.

Example

import io.

rw =>
Writer = open("bond.txt", write),
fprintln(Writer, " Bond, James The name is."),
flush(Writer),
close(Writer),
Reader = open("bond.txt", read),
CS = sizeof_char(),
setpos(Reader, 13 * CS)
L = fread_char(Reader, 11),
print(L), % "The name is"
rewind(Reader),
L := fread_char(Reader, 13),
print(L), % " Bond, James "
seek(Reader, -12 * CS, current),
L := fread_char(Reader, 4),
print(L), % "Bond"
seek(Reader, 1 * CS, end)
C = fread_char(Reader),
print(C), % "."
close(Reader).

The above example prints “The name is Bond, James Bond.” if there are no errors
during I/O. The following five functions and predicates are used for repositioning file locations.

• getpos(FD) = Pos: This function returns the current file position, indicating the offset
in the number of bytes from the beginning of the file.

• setpos(FD, Pos): This predicate changes the current file position of the read/write
pointer to Pos, which is the number of bytes from the beginning of the file.

• rewind(FD): This predicate repositions the read/write pointer at the beginning of the
file.

• seek(FD, Offset, From): This predicate is similar to setpos, because both pred-
icates change the position of the read/write pointer. However, the seek predicate uses two
arguments to indicate the file location. The Offset argument indicates the number of bytes
to move. The From argument is an atom. If From is beginning, then seek will move
the read/write pointer to Offset bytes from the beginning of the file. If From is current,
then seek will move the read/write pointer to Offset bytes from the current position. This
is the only case where Offset can be negative, because a negative offset indicates that the
read/write pointer should be moved backwards. If From is end, then seek will move the

68

read/write pointer to Offset bytes before the end of the file; note that, although the pointer
is moved backwards from the end of the file, Offset must be a positive number.

• sizeof char() = Size: The bytesize of a character can differ on different systems.
Therefore, the sizeof char function indicates the size of a character, in bytes, on the cur-
rent system. The getpos, setpos, and seek functions all indicate offsets in bytes. If you
want to show how many characters to move the read/write pointer, use the sizeof char
function, and multiply the Offset or Pos parameter by the result, as shown in the previous
example. Note that if you seek to the middle of a character while performing character I/O,
the program will have unpredictable behavior.

The repositioning functions have no effect if they are passed the file descriptor of standard input,
standard output, or standard error. The getpos function will return 0, while the setpos, seek,
and rewind functions will not change the file pointer location.

9.6 Standard File Descriptors

The atoms stdin, stdout, and stderr represent the file descriptors for standard input, stan-
dard output, and standard error. These atoms allow the program to use the input and output func-
tions of the io module to read from and to write to the three standard streams. An advantage of
using these atoms is that they can be used to allow the user to redirect standard input, standard
output, and standard error to files, as shown in the following section.

9.7 Redirection

The following example shows how to redirect standard input and standard output to files. This
allows the program to read from and to write to files by using the functions and predicates that are
defined in the basic module.

Example

import io.

rw1 =>
Reader = open("input_file.txt"),
Writer = open("output_file.txt", write),
close(stdin),
InFD = dup(Reader), % Redirects standard input
close(stdout),
OutFD = dup(Writer), % Redirects standard output
close(Reader),
close(Writer),
L = read_line(),
while (not at_end_of_stream(InFD))

L := read_line(), % Reads from input_file.txt
writeln(L) % Writes to output_file.txt

end.

rw2 =>
Reader = open("input_file.txt"),

69

Writer = open("output_file.txt", write),
dup2(Reader, stdin), % Redirects standard input
dup2(Writer, stdout), % Redirects standard output
close(Reader),
close(Writer),
L = read_line(),
while (not at_end_of_stream(stdin))

L := read_line(), % Reads from input_file.txt
writeln(L) % Writes to output_file.txt

end.

The above example uses the dup and dup2 built-ins.

• dup(FD) = NewFD: This function modifies the program’s file descriptor table. It takes
the lowest available file descriptor, and adds it to the program’s file descriptor table. Then,
dup copies the name of FD’s file to the new file descriptor. The dup function returns the
new file descriptor.

• dup2(FromFD, ToFD): This predicate modifies the program’s file descriptor table,
performing two operations. First, dup2 closes the entry to which ToFD points in the file
descriptor table. Then, dup2 copies the name of the file of FromFD to ToFD in the file
descriptor table.

If the above examples do not throw any errors, then they close standard input, copying input file.txt
to the file descriptor that is usually reserved for standard input. Then, they close standard output,
copying output file.txt to the file descriptor number that is usually reserved for standard
output. At this point, input file.txt and output file.txt each have two entries in the
file descriptor table. Then, since Reader and Writer will not be used, their file descriptors
are closed. At this point, input file.txt and output file.txt each have one entry in
the file descriptor table. Finally, the program uses read line and writeln, both of which are
defined in the basic Picat module, in order to read from and to write to the files.

Notice the differences between rw1 and rw2. The rw1 example explicitly closes stdin.
Then, the lowest available file descriptor is the file descriptor that was used for stdin, so dup
copies input file.txt to the file descriptor that is usually reserved for standard input. Then,
rw1 explicitly closes stdout. The lowest available file descriptor is the file descriptor that
was used for stdout, so dup copies output file.txt to the file descriptor that is usually
reserved for standard output. Unlike rw1, the rw2 example explictly indicates standard input and
standard output as the destination file descriptors for dup2. The dup2 predicate closes stdin
and stdout automatically.

Note that a program’s file descriptor table is initialized as soon as it begins execution. Each
process has its own file descriptor table. The dup and dup2 built-ins only modify the current pro-
gram’s file descriptor table, which is destroyed when the program finishes execution. Therefore, if
a program is executed multiple times, then stdin, stdout, and stderr are initialized to their
default values before execution.

Note that standard input, standard output, and standard error do not need to be explicitly closed,
even if they are redirected. This is why the program does not call close after the while loop
terminates.

The following example shows how to use dup2 together with the process module in order
to imitate the command “ls -l > dir.txt”.

70

Example

import io, process.

ls =>
Writer = open("dir.txt", write),
dup2(Writer, stdout),
close(Writer),
process.exec("ls", "-l").

The dup2 predicate redirects standard output to “dir.txt”. Therefore, when exec is
called, the output of “ls”, will also redirect to “dir.txt”. For more information about the
exec predicate, see Chapter 13.

9.8 Temporary Files and Pipes

The io module has four functions whose purpose is to create new files and file descriptors for the
purposes of communication.

9.8.1 Temporary Files

The mktmp function is used to create temporary files.

• mktmp() = FD: This function creates a temporary file in the file system, and returns
a file descriptor for the temporary file. This file descriptor can be used to read from and
to write to the file. The temporary file exists until the file descriptor is closed, or until
termination of the program that called the mktmp function.

9.8.2 Pipes

Pipes are special files that are used for interprocess communication. Picat provides three functions
and predicates for the creation of pipes.

• mkpipe() = FD Map: This function creates an unnamed pipe, which is stored in in
kernel memory. This function returns a map with two keys. The readFD key represents
the file descriptor that is used to read from the pipe. The writeFD key represents the
file descriptor used to write to the pipe. The unnamed pipe can only be used by related
processes. It is removed from kernel memory when all processes that use the pipe have
terminated. Note that if the pipe is empty, and no process has the pipe open for writing, then
the fread functions will return eof.

• mkfifo(Path): This predicate creates a named pipe, or a FIFO, which is stored as a
file in the location specified by Path. The FIFO can be used by unrelated processes. Like
a regular file, the FIFO remains in memory even if it is not currently being used by any
processes. In order to remove the FIFO from memory, use the rm predicate that is defined
in the os module.

• mkfifo(Path, Mode): This version of mkfifo has a Mode parameter. This parame-
ter is either a single atom or a list of two or three atoms. The format of the atoms is specified
by the regular expression r?w?(u|g|o). If the atom contains r, then it provides permis-
sion to read from the FIFO. If the atom contains w, then it provides permission to write to
the FIFO. The second part of the atom indicates the receiver(s) of the permission, where u

71

specifies the user, g specifies anybody who is in the user’s group, and o specifies anybody
who is not in the user’s group. At most one atom can exist for each of u, g, and o. If
a permission is not explicitly specified in the Mode parameter, then the permission is not
provided. However, the mkfifo(Path) predicate provides a default permission list of
[rwu, rwg], which allows the user and the user’s group to read from and to write to the
FIFO.

The following example demonstrates the difference between unnamed pipes and named pipes.

Example:

% File 1
import io, process.

unnamed =>
FDs = mkpipe(), % create the pipe
ID = process.fork(),
if ID == 0 then % child process

close(FDs.writeFD),
reader(FDs.readFD)

else % parent process
close(FDs.readFD),
writer(FDs.writeFD)

end.

reader(FD) =>
Str = fread_line(FD),
close(FD).

writer(FD) =>
fwriteln(FD, "Communicating"),
close(FD).

% File 2
import io.

fifo =>
mkfifo("fifo.txt", [rwu, rwg, rwo]),
Writer = open("fifo.txt", append),
foreach (I in 1..100)

fwriteln(Writer, I)
end,
close(Writer).

% File 3 -- executed by any user some time after File 2 was executed
import io, os.

nofifo =>
Reader = open("fifo.txt", read),
while (not at_end_of_stream(Reader))

72

I := fread_int(Reader),
write_int(I), % prints I to standard output
writeln()

end,
close(Reader),
os.rm("fifo.txt"). % deletes the fifo

Notice the differences between the unnamed pipe and the named pipe. The unnamed pipe is
used by two related processes. Each process closes one of the pipe’s file descriptors immediately,
and closes the other file descriptor as soon as the process finishes communicating. As soon as the
unnamed predicate finishes executing, the unnamed pipe is removed from memory. The named
pipe can be used by two unrelated processes. After the fifo predicate finishes executing, the
named pipe remains in memory until it is removed in the nofifo predicate.

For more information on processes, see Chapter 13.

9.8.3 A Note on Errors

The functions and predicates in the io module can throw a large number of errors. For example,
attempts to read from and to write to a non-existent file descriptor will generate an error. Another
error occurs when trying to create a file that already exists. Errors can also be generated when the
user tries to perform an operation on a file, such as writing to the file, when the user does not have
permission to perform the operation.

In most cases, if an I/O error occurs, then Picat will throw io error(ENo, EMsg,
Source), where ENo is the error number, EMsg is a string that indicates the error that occurred,
and Source is the goal that caused the error to occur.

If the open function is unable to find the file that is passed to it, then the open function will
throw file not found(Earg, Source), where Earg is the name of the file, and Source is
the function or predicate that called open.

73

Chapter 10

The File System

Picat has an os module for manipulating files and directories.

10.1 The Path Parameter

Many of the functions and predicates in this module have a Path parameter. This parameter is
a string, representing the path of a file or directory. This path can be an absolute path, from the
system’s root directory, or a relative path, from the current file location. Different systems use dif-
ferent separator characters to separate directories in different levels of the directory hierarchy. For
example, Windows uses ‘\’ and Unix uses ‘/’. The following function outputs a single character,
representing the character that the current system uses as a file separator.

• separator() = V al

10.2 Directories

The os module includes functions for reading and modifying directories. The following example
shows how to list all of the files in a directory tree, using a depth-first directory traversal.

Example

import os.

directory_traversal =>
Root = root(), % get the root directory
traverse(Root).

traverse(Dir) =>
DirsList = listdir(Dir),
if (DirsList != [])

print("Inside "),
println(Dir),
println(DirsList)

end,
foreach (File in DirsList)

if (directory(File)) % if File is a directory, traverse it
FullPath = Dir ++ separator() ++ File,
traverse(FullPath) % recursive traversal

74

end
end.

The following functions can be used to read the contents of a directory:

• listdir(Path) = List: This function returns a list of all of the files and directories
that are contained inside the directory specified by Path. If Path is not a directory, then
an error is thrown. The returned list contains strings, each of which is the name of a file or
directory.

• listdir(Path, Pattern) = List: The Pattern parameter is a string that represents
a regular expression. The list that is returned will only contain files and directories whose
names match the regular expression.

• root() = Path: This function returns a string representing the path of the root of the
file system tree (such as “C:\”, or “/”).

The above example also uses the directory predicate, which will be discussed in Section 10.4.

10.2.1 The Current Working Directory

The os module includes two functions that obtain the program’s current working directory:

• cwd() = Path

• pwd() = Path

The os module also includes two predicates to change the program’s current working direc-
tory:

• cd(Path)

• chdir(Path)

If the cd and chdir predicates cannot move to the directory specified by Path, the functions
throw an error. This can occur if Path does not exist, if Path is not a directory, or if the program
does not have permission to access Path.

10.3 Modifying Files and Directories

In a file system, each directory entry refers to a structure called an inode, which contains file
information. The ino function returns the number of the inode to which Path refers.

10.3.1 Creation

The os module contains a number of predicates for creating new files and directories:

• create(Path): This predicate creates a new file at location Path. The file will be cre-
ated with a default permission list of [rwu, rwg, ro]. If the program does not have
permission to write to the parent directory of Path, this predicate will throw an error. An
error will also occur if the parent directory does not exist.

• create(Path, Mode): The Mode parameter indicates access permissions. For details,
see the chmod function, in Section 10.3.2. If a permission is not explicitly specified in the
Mode parameter, then the permission is not provided.

75

• mkdir(Path): This predicate creates a new directory at location Path. The directory will
be created with a default permission list of [rwu, rwg, ro]. If the program does not
have permission to write to the parent directory of Path, this predicate will throw an error.
An error will also occur if the parent directory does not exist.

• mkdir(Path, Mode): The Mode parameter indicates access permissions. For details,
see the chmod function, in Section 10.3.2. If a permission is not explicitly specified in the
Mode parameter, then the permission is not provided. Note that permissions that include x
are not allowed for directories.

• mkdirs(Path): This predicate performs recursive directory creation. It creates a new
directory at location Path. If the parent directories of Path do not exist, then this predicate
also creates the parent directories. This predicate will throw an error if it does not have
permission to create the highest directory that it must create.

• mkdirs(Path, Mode): All of the directories that mkdirs creates will have the same
permissions.

• mv(Path1, Path2): This moves a file or a directory from Path1 to Path2. This pred-
icate will throw an error if Path1 does not exist. An error will also occur if the program
does not have permission to write to Path1 or Path2.

• cp(Path1, Path): This copies a file or directory from Path1 to Path2. This predicate
will throw an error if Path1 does not exist. An error will also occur if the program does not
have permission to read from Path1, or if it does not have permission to write to Path2.

• link(Path1, Path2): This creates a hard link to Path1 in location Path2. A hard link
is a directory entry. There can be multiple hard links to the same inode. This predicate will
throw an error if it does not have permission to write to Path2.

• shortcut(Path1, Path2): This creates a symbolic link to Path1 in location Path2.
A symbolic link is a file that contains the name of another file or directory. This predicate
might not be supported by Windows. This predicate will throw an error if it does not have
permission to write to Path2.

10.3.2 Modification

The os module has one predicate for modifying access permissions.

• chmod(Path, Mode): An error will be thrown if the program cannot modify the per-
missions.

The Mode parameter is either a single atom or a list of two or three atoms. This parameter
specifies the access permissions. The format of the atoms is specified by the regular expression
r?w?x?(u|g|o). If the atom contains r, then it provides permission to read from the file. If
the atom contains w, then it provides permission to write to the file. If the atom contains x, then
it provides permission to execute the file. The second part of the atom indicates the receiver(s) of
the permission, where u specifies the user, g specifies anybody who is in the user’s group, and o
specifies anybody who is not in the user’s group. At most one atom can exist for each of u, g, and
o.

Note that the chmod predicate will only modify the permissions for the specified receivers. If
a receiver is not specified in the Mode parameter, then the receiver will have the same permissions
as the receiver had before chmod was called.

76

10.3.3 Deletion

The os module contains a number of predicates for deleting files and directories.

• rm(Path): This deletes a file. Errors will be thrown if the file does not exist, if the program
does not have permission to delete the file, or if Path refers to a directory, a hard link, a
symbolic link, or a special file type.

• rmdir(Path): This deletes a directory. Errors will be thrown if the directory does not
exist, the program does not have permission to delete the directory, the directory is not
empty, or if Path does not refer to a directory.

• unlink(Path): This removes a hard link or a symbolic link.

10.4 Obtaining Information about Files

The os module contains a number of functions that retrieve file status information, and predicates
that test the type of a file. These predicates will all throw an error if the program does not have
permission to read from Path.

• dev id(Path) = Int: This function returns the device ID of the device that contains
Path.

• ino(Path) = Int: This function returns the inode number of Path.

• mode(Path) = String: This function returns the file permissions for Path in a string.
The string will contain atoms, in the same format as the atoms that are passed to the chmod
predicate. This function will throw an error if Path does not exist.

• readable(Path): Is the program allowed to read from the file?

• writable(Path): Is the program allowed to write to the file?

• executable(Path): Is the program allowed to execute the file?

• mode(Path, V alue): Does the program’s current permission for the file include V alue?
The V alue parameter is one of the atoms: read, write, or execute.

• nlink(Path) = Int: This function returns the number of hard links to the inode to
which Path refers.

• uid(Path) = Int: This function returns the user ID of the user who created Path. This
function will throw an error if Path does not exist.

• gid(Path) = Int: This function returns the group ID of the user who created Path.
This function will throw an error if Path does not exist.

• size(Path) = Int: If Path is not a symbolic link, then this function returns the number
of bytes contained in the file to which Path refers. If Path is a symbolic link, then this
function returns the path size of the symbolic link.

• file base name(Path) = List: This function returns a string containing the base
name of Path. For example, the base name of “a/b/c.txt” is “c.txt”.

77

• file directory name(Path) = List: This function returns a string containing the
path of the directory that contains Path. For example, the directory name of “a/b/c.txt”
is “a/b/”.

• atime(Path) = DateT ime: This function returns the date and time that Path was last
accessed.

• ctime(Path) = DateT ime: This function returns the date and time that Path was
created.

• mtime(Path) = DateT ime: This function returns the date and time that Path was last
modified.

• file type(Path) = Term: This returns the type of Path. The value returned is one
of the atoms: regular, directory, hard link, symbolic link, fifo, socket,
block special, char special, message queue, semaphore, shared memory,
or unknown.

• exists(Path): Is Path an existing file or directory?

• file(Path): Does Path refer to a regular file? This predicate is true if Path is neither a
directory nor a special file, such as a socket or a pipe.

• file exists(Path): This tests whether Path exists, and, if it exists, whether Path
refers to a regular file.

• directory(Path): Does Path refer to a directory?

• directory exists(Path): This tests whether Path exists, and, if it exists, whether
Path refers to a directory.

• link(Path): Does Path refer to a hard link?

• shortcut(Path): Does Path refer to a symbolic link? This predicate might not be
supported by Windows.

• fifo(Path): Does Path refer to a named pipe?

• socket(Path): Does Path refer to a socket?

• block special(Path): Does Path refer to a block special file? A special file is used
to communicate with hardware. A block special file is capable of reading or writing blocks
of data at a time. This predicate might not be supported by Windows.

• char special(Path): Does Path refer to a character special file? A character special
can only read or write one character at a time.

• message queue(Path): Does Path refer to a message queue? Message queues, as
defined by POSIX, allow processes to exchange data through messages. This predicate is
true if the system implements POSIX message queues and Path refers to a message queue.

• semaphore(Path): Does Path refer to a semaphore? Semaphores are used to protect
critical sections, in which race conditions can occur, in multithreaded code. This predicate
is true Path refers to a semaphore. For more on semaphores, see Chapter 12.

78

• shared memory(Path): Does Path refer to a shared memory object? Shared memory
objects, as defined by POSIX, allow unrelated processes to share an area of memory. This
predicate is true if the system implements POSIX shared memory objects, and Path refers
to a shared memory object.

The following example shows how to use a few of the predicates.

Example

import os.

test_file(Path) =>
if (not exists(Path)) then

create(Path)
elseif (directory(Path)) then

println("Directory")
elseif (file(Path)) then

println("File")
else

println("Unknown")
end.

79

Chapter 11

Event-Driven Actors and Action Rules

Many applications require event-driven computing. For example, an interactive GUI system needs
to react to UI events such as mouse clicks on UI components; a Web service provider needs to
respond to service requests; a constraint propagator for a constraint needs to react to updates to the
domains of the variables in the constraint. Picat provides action rules for describing event-driven
actors. An actor is a predicate call that can be delayed and can be activated later by events. Actors
communicate with each other through event channels.

11.1 Channels, Ports, and Events

An event channel is an attributed variable to which actors can be attached, and through which
events can be posted to actors. A channel has four ports, named ins, bound, dom, and any,
respectively. Many built-ins in Picat post events. When an attributed variable is instantiated,
an event is posted to the ins-port of the variable. When the lower bound or upper bound of a
variable’s domain changes, an event is posted to the bound-port of the variable. When an inner
element E, which is neither the lower or upper bound, is excluded from the domain of a variable,
E is posted to the dom-port of the variable. When an arbitrary element E, which can be the lower
or upper bound or an inner element, is excluded from the domain of a variable, E is posted to the
any-port of the variable. The division of a channel into ports facilitates speedy handling of events.
For better performance, the system posts an event to a port only when there are actors attached to
the port. For example, if no actor is attached to a domain variable to handle exclusions of domain
elements, then these events will never be posted.

The built-in post event(X,T) posts the event term T to the dom-ports of the chan-
nels specified by X , where X can be a channel variable, a conjunction of channel variables
(X1,X2,. . .,Xn), or a disjunction of channel variables (X1;X2;. . .;Xn). When X is a con-
junction, the event is posted to the actors attached to the dom-ports of all of the channel variables;
when X is a disjunction, the event is posted to actors attached to the dom-port of at least one of the
channels. For example, suppose that an actor is attached to variable X1, but the actor is not attached
to variable X2; then, the actor will not be activated by the call post event((X1,X2),T), but
the actor will be activated by the call post event((X1;X2),T). Operationally,
post event((X1;X2),T) is different from posting T to X1 and X2 separately; if an actor is
attached to both X1 and X2, then post event((X1;X2),T) causes the actor to be activated
one time, while posting T to X1 and X2 separately causes the actor to be activated twice.

The following built-ins are used to post events to one of a channel’s four ports:

• post event ins(X): posts the event atom ins to the ins-ports of the channels of X .

80

• post event bound(X): posts the event atom bound to the bound-ports of the chan-
nels of X .

• post event dom(X, T): posts the event T to the dom-ports of the channels of X .

• post event any(X, T): posts the event T to the any-ports of the channels of X .

The call post event(X,T) is the same as post event dom(X,T). This means that the
dom-port of a channel variable has two uses: posting exclusions of inner elements from the do-
main, and posting general term events.

11.2 Action Rules

Picat provides action rules for describing the behaviors of actors. An action rule takes the follow-
ing form:

Head,Cond, {Event} => Body

where Head is an actor pattern, Cond is an optional condition, Event is a non-empty set of event
patterns separated by ’,’, and Body is an action. For an actor that is activated by an event, an
action rule is said to be applicable if the actor matches Head and Cond is true. A predicate for
actors is defined with action rules and non-backtrackable rules. It cannot contain backtrackable
rules.

Unlike rules for a normal predicate or function, in which the conditions can contain any pred-
icates, the conditions of the rules in a predicate for actors must only contain inline test predicates,
such as type-checking built-ins (e.g., integer(X) and var(X)) and comparison built-ins
(e.g., equality test X == Y , disequality test X ˜== Y , and arithmetic comparison X > Y).
This restriction ensures that no variables in an actor can be changed while the condition is exe-
cuted.

For an actor that is activated by an event, the system searches the definition sequentially from
the top for an applicable rule. If no applicable rule is found, then the actor fails. If an applicable
rule is found, the system executes the body of the rule. If the body fails, then the actor also
fails. The body cannot succeed more than once. The system enforces this by converting Body
into ‘once Body’ if Body contains calls to nondeterministic predicates. If the applied rule is
an action rule, then the actor is suspended after the body is executed, meaning that the actor is
waiting to be activated again. If the applied rule is a normal non-backtrackable rule, then the actor
vanishes after the body is executed. For each activation, only the first applicable rule is applied.

For a call and an action rule ‘Head, {Event}, Cond => Body’, the call is registered as an
actor if the call matches Head and Cond evaluates to true. The event pattern Event implicitly
specifies the ports to which the actor is attached, and the events that the actor watches. The
following event patterns are allowed in Event:

• event(X,T): This is the general event pattern. The actor is attached to the dom-ports of
the variables in X . The actor will be activated by events posted to the dom-ports. T must
be a variable that does not occur before event(X,T) in the rule.

• ins(X): The actor is attached to the ins-ports of the variables in X . The actor will be
activated when a variable in X is instantiated.

• bound(X): The actor is attached to the bound-ports of the variables in X . The actor will
be activated when the lower bound or upper bound of the domain of a variable in X changes.

81

• dom(X): The actor is attached to the dom-ports of the variables in X . The actor will be
activated when an inner value is excluded from the domain of a variable in X . The actor is
not interested in what value is actually excluded.

• dom(X,E): This is the same as dom(X), except the actor is interested in the value E
that is excluded. E must be a variable that does not occur before dom(X,E) in the rule.

• dom any(X): The actor is attached to the any-ports of the variables in X . The actor will
be activated when an arbitrary value, including the lower bound value and the upper bound
value, is excluded from the domain of a variable in X . The actor is not interested in what
value is actually excluded.

• dom any(X,E): This is the same as dom any(X), except the actor is interested in
the value E that is actually excluded. E must be a variable that does not occur before
dom any(X,E) in the rule.

In an action rule, multiple event patterns can be specified. After a call is registered as an actor
on the channels, it will be suspended, waiting for events, unless the atom generated occurs in
Event, in which case the actor will be suspended after Body is executed.

Each thread has an event queue. After events are posted, they are added into the queue. Events
are not handled until execution enters or exits a non-inline predicate or function. In other words,
only non-inline predicates and functions can be interrupted, and inline predicates, such as X =
Y , and inline functions, such as X + Y , are never interrupted by events.

There is no primitive for killing actors or explicitly detaching actors from channels. As de-
scribed above, an actor never disappears as long as action rules are applied to it. An actor vanishes
only when a normal rule is applied to it. Consider the following example.

p(X,Flag), {event(X,T)},
var(Flag),

=>
writeln(T),
Flag=1.

p(_,_) => true.

An actor defined here can only handle one event posting. After it handles an event, it binds the
variable Flag. When a second event is posted, the action rule is no longer applicable, causing the
second rule to be selected.

One question arises here: what happens if a second event is never posted to X? In this case, the
actor will stay forever. If users want to immediately kill the actor after it is activated once, then
users have to define it as follows:

p(X,Flag), var(Flag),
{event(X,O),ins(Flag)}

=>
write(O),
Flag=1.

p(_,_) => true.

In this way, the actor will be activated again after Flag is bound to 1, and will be killed after the
second rule is applied to it.

82

11.3 Lazy Evaluation

The built-in predicate freeze(X,Goal) is equivalent to ‘once Goal’, but its evaluation is
delayed until X is bound to a non-variable term. The predicate is defined as follows:

freeze(X,Goal),var(X),{ins(X)} => true.
freeze(X,Goal) => call(Goal).

For the call freeze(X,Goal), if X is a variable, then X is registered as an actor on the ins-port
of X, and X is then suspended. Whenever X is bound, the event ins is posted to the ins-port of
X, which activates the actor freeze(X,Goal). The condition var(X) is checked. If true, the
actor is suspended again; otherwise, the second rule is executed, causing the actor to vanish after
it is rewritten into once Goal.

The built-in predicate different terms(T1,T2) is a disequality constraint on terms T1

and T2. The constraint fails if the two terms are identical; it succeeds whenever the two terms are
found to be different; it is delayed if no decision can be made because the terms are not sufficiently
instantiated. The predicate is defined as follows:

different_terms(X,Y) =>
different_terms(X,Y,1).

different_terms(X,Y,B),(var(X);var(Y)),{ins(X),ins(Y)} => true.
different_terms([X|Xs],[Y|Ys],B) =>

different_terms(X,Y,B1),
different_terms(Xs,Ys,B2),
B #= (B1 #\/ B2).

different_terms(X,Y,B),struct(X),struct(Y) =>
if (X.name ˜= Y.name; X.length ˜= Y.length) then

B=1
else

Bs=new_array(X.length),
foreach(I in 1 .. X.length)

different_terms(X[I],Y[I],B[I])
end,
max(Bs) #= B

end.
different_terms(X,Y,B),X==Y => B=0.
different_terms(X,Y,B) => B=1.

The call different terms(X,Y,B) is delayed if either X or Y is a variable. The delayed call
watches ins(X) and ins(Y) events. Once both X and Y become non-variable, the action rule
becomes inapplicable, and one of the subsequent rules will be applied. If X and Y are lists, then
they are different if the heads are different (B1), or if the tails are different (B2). This relationship
is represented as the Boolean constraint B #= (B1 #\/ B2). If X and Y are both structures,
then they are different if the functor is different, or if any pair of arguments of the structures is
different.

11.4 Constraint Propagators

A constraint propagator is an actor that reacts to updates of the domains of the variables in a
constraint.The following predicate defines a propagator for maintaining arc consistency on X for
the constraint X+Y #= C:

83

x_in_c_y_ac(X,Y,C),var(X),var(Y),
{dom(Y,Ey)}
=>

domain_set_false(X,C-Ey).
x_in_c_y_ac(X,Y,C) => true.

Whenever an inner element Ey is excluded from the domain of Y, this propagator is triggered to
exclude C-Ey, which is the support of Ey, from the domain of X. For the constraint X+Y #= C,
users need to generate two propagators, namely, x in c y ac(X,Y,C) and x in c y ac(Y,X,C),
to maintain the arc consistency. Note that in addition to these two propagators, users also need to
generate propagators for maintaining interval consistency, because dom(Y,Ey) only captures
exclusions of inner elements, and does not capture bounds. The following propagator maintains
interval consistency for the constraint:

x_add_y_eq_c_ic(X,Y,C),var(X),var(Y),
{generated,ins(X),ins(Y),bound(X),bound(Y)}

=>
X in C-Y.max .. C-Y.min,
Y in C-X.max .. C-X.min.

x_add_y_eq_c_ic(X,Y,C),var(X) =>
X = C-Y.

x_add_y_eq_c_ic(X,Y,C) =>
Y = C-X.

When both X and Y are variables, the propagator x add y eq c ic(X,Y,C) is activated when-
ever X and Y are instantiated, or whenever the bounds of their domains are updated. The body
maintains the interval consistency of the constraint X+Y #= C. The body is also executed when
the propagator is generated. When either X or Y becomes non-variable, the propagator becomes a
normal call, and vanishes after the variable X or Y is solved.

11.5 Timers and Time Events

In some applications, actors need to be activated regularly at a predefined time rate. For example,
a clock animator is activated every second, and the scheduler in a time-sharing system switches
control to the next process after a certain time quota elapses. To facilitate the description of time-
related behavior of actors, Picat provides a module named timer.

The function new timer(Interval) returns a timer that posts a time event at the specified
time rate. A timer runs as a separate thread, and starts ticking immediately after it is created. A
timer itself is a channel. It posts the event time to itself in every Interval milliseconds. A timer
T stops posting events after the predicate call stop(T). A stopped timer can be started again. A
timer is destroyed after the call kill(T) is executed.

• new timer(Interval) = T : T is a timer that posts a time event every Interval mil-
liseconds.

• new timer() = T : This is equivalent to new timer(200).

• start(T): Start the timer T . After a timer is created, it starts ticking immediately. There-
fore, it is unnecessary to start a timer with this call. This predicate is used to restart a stopped
timer.

• stop(T): Stop the timer.

84

• kill(T): Kill the timer.

• set interval(T, Interval): Reset the interval of the timer T to Interval. The up-
date is destructive, and the old value is not restored upon backtracking.

• get interval(T) = Interval: Get the interval of the timer T .

Example

The following example shows two actors that behave in accordance with two timers.

go =>
T1 = new_timer(100),
T2 = new_timer(1000),
T1.add_actor(ping),
T2.add_actor(pong),
while (true) true end.

ping,{_} => writeln(ping).

pong,{_} => writeln(pong).

Note that the empty while loop in predicate go is needed to let the main thread run. Without it,
the query go would succeed before any time event is posted, meaning that neither of the actors
would get a chance to be activated.

85

Chapter 12

Threads

With event-driven actors, a program’s execution in Picat is no longer single-threaded. When an
event occurs, the predicate or function that is currently being executed will be interrupted, and
control will be moved to the actors that are activated. Actors run concurrently, but do not run
in parallel. This means that, at any time, only one actor can run. An actor’s execution can be
interrupted by another event, causing a different actor to run. After all of the activated actors finish
their execution, the predicate or function that was interrupted will resume its execution.

With the availability of multi-core processors, parallel processing has gained new prominence
in delivering high-performance computing. The emergence of multi-core processors has the po-
tential for breaking the performance barrier, especially for combinatorial optimization problems,
which demand ever-increasing computational power. Picat’s thread module can be used to pro-
gram concurrent and parallel tasks as threads. A thread is represented as an attributed variable
that contains, among other attributes, a thread descriptor. A thread can serve as a communication
channel to which actors can be attached, and through which messages can be sent to actors running
in the same or in different threads.

Each thread runs on a separate Picat virtual machine that has its own stack and heap. All
threads share the following areas: symbol tables, the code area, the file and socket table, the table
area, and the global map. At the implementation level, Picat synchronizes the operations of these
areas in order to ensure consistency of data.

12.1 Starting and Terminating Threads

Let’s begin with an example.

Example

import thread.

main =>
PingThread = new_thread(ping_pong,ping,10),
PongThread = new_thread(ping_pong,pong,10),
PingThread.start(),
PongThread.start().

ping_pong(Msg,N) =>
foreach(I in 1..N)

writeln(Msg)

86

end.

The main predicate creates two threads: PingThread and PongThread. After starting,
PingThread executes the call ping pong(ping,10) to display ping 10 times, and
PongThread executes the call ping pong(pong,10) to display pong 10 times. The main
thread will wait until both PingThread and PongThread terminate. In the standard output,
users will see the lines in a random order.

This example uses the following built-ins.

• new thread(S, Arg1, . . ., Argn) = Thread: This function creates a new thread,
which will execute the call

call(S,Arg1,. . .,Argn).

The return value of the function new thread is an attributed variable that contains, among
other attributes, an attribute named thread id.

• start(Thread): This predicate puts Thread into the ready state, allowing the scheduler
to schedule it for execution.

A thread terminates in the following situations: (1) when it executes the predicate halt; (2)
when the call that it executes succeeds, and all of the sub-threads that are created by the call have
terminated; (3) when the call that it executes fails. When a thread terminates, all of its sub-threads
will also terminate.

In this example, the EchoThread installs an actor, and then loops until Flag becomes a
non-variable. The SenderThread sends hello to EchoThread three times, and then sends
done to EchoThread, causing it to kill itself. After sending the messages, the SenderThread
terminates.

12.2 Making Threads Wait

Consider the following code.

Example

import thread.

main =>
Thread1 = new_thread(make_key),
Thread1.start(),
println(get_global_map().get(thread_key)).

make_key =>
get_global_map().put(thread_key, 1).

This code creates a new thread, which puts a key-value pair in the global map, which is shared
by all threads. The main thread is supposed to print the value that the other thread, Thread1,
stores in the global map. However, the main thread and Thread1 are executing in parallel, so
there is no guarantee that Thread1 will have stored thread key on the global map by the time
that the main thread tries to retrieve the key’s value. If the main thread calls println before

87

Thread1 stores thread key on the global map, then the program will raise the exception
key not found(thread key, main).

The solution to this problem is to have the main thread wait for Thread1 to finish execution.
This is accomplished by using the join predicate, as in the following code.

Example

import thread.

main =>
Thread1 = new_thread(make_key),
Thread1.start(),
join(Thread1),
println(get_global_map().get(thread_key)).

make_key =>
get_global_map().put(thread_key, 1).

The line join(Thread1) causes the main thread to wait for Thread1 to finish execution.
Then, assuming that no error has occurred, thread key will be stored on the global map before
the main thread tries to access it.

The thread module has two predicates that cause a thread to wait.

• join(Thread): This predicate causes the current thread to wait until Thread finishes
running. This means that the current thread does not execute any more code until Thread
terminates.

• sleep(Milliseconds): This predicate causes the current thread to pause execution until
Milliseconds time has passed.

12.2.1 Deadlock

The thread module has a this thread() function, which returns the thread that calls the
function.

• this thread() = Thread: The built-in function this thread() returns the exe-
cuting thread of the function call.

Suppose that a thread calls join(this thread()). This causes a thread to wait for itself
before the thread continues to run. This code is the simplest example of a deadlock. Deadlocks
occur when at least one thread is waiting forever, consuming resources.

12.3 Mutual Exclusion

Mutual exclusion occurs when multiple threads need to access a shared resource, but only one
thread can access the resource at any given time.

Consider the following code.

88

Example

import thread, io.

main =>
FD = io.open("threads.txt", write),
Thread1 = new_thread(print_val, 1, FD),
Thread2 = new_thread(print_val, 2, FD),
Thread1.start(),
Thread2.start(),
join(Thread1),
join(Thread2),
io.close(FD).

print_val(I, FD) =>
io.fprintf(FD, "Thread %d is writing %d.", I, I).

In this code, both Thread1 and Thread2 are accessing threads.txt. It is possible for
both threads to write to the file at the same time, causing their output to interleave. For example,
after the above code executes, the contents of threads.txt can be:

Thread 1 is wriThread2 isting writing 2
1

This occurs because both threads are simultaneously trying to access a shared resource,
threads.txt. In order to solve this problem, and to allow mutual exclusion, access to shared
resources, such as variables and files, should be placed in a critical section of code, which can
only be accessed by one thread at a time. The thread module has four ways to provide mu-
tual exclusion: using a mutex, using a semaphore, using a read-write lock, and using a condition
variable.

12.3.1 Mutex Locks

A mutex is a structure that has two possible states: locked and unlocked. When a thread wants to
access a critical section of code, it tries to acquire the mutex. If the mutex is unlocked, then the
thread acquires the mutex immediately, and locks the mutex; after the thread leaves the critical
section, it unlocks the mutex. Otherwise, if the mutex is locked, then that means that another
thread has locked the mutex, and is executing the critical section; in this case, the thread that is
currently trying to acquire the mutex will block until the mutex is unlocked.

Picat has three built-ins that manage mutex locks.

• new mutex() = Mutex: This function creates a new mutex lock.

• acquire mutex(Mutex): This predicate is used to acquire a mutex lock. If the mutex
is currently in the unlocked state, then the current thread acquires the mutex and locks it.
Otherwise, if the mutex is in the locked state, then the current thread waits until the mutex
is unlocked, after which the thread tries again to acquire the mutex.

• release mutex(Mutex): This predicate is used to release a mutex lock. It unlocks the
mutex, allowing waiting threads, which are trying to acquire the mutex, to continue running.
Note that a mutex can only be released by the thread that has acquired the mutex.

For example, the following code modifies the print val example to use a mutex lock.

89

Example

import thread, io.

main =>
FD = io.open("threads.txt", write),
Mutex = new_mutex(),
Thread1 = new_thread(print_val, Mutex, 1, FD),
Thread2 = new_thread(print_val, Mutex, 2, FD),
Thread1.start(),
Thread2.start(),
join(Thread1),
join(Thread2),
io.close(FD).

print_val(Lock, I, FD) =>
acquire_mutex(Lock), % Enter critical section
output_val(I, FD),
release_mutex(Lock). % Leave critical section

output_val(I, FD) => % Critical Section
io.fprintf(FD, "Thread %d is writing %d.", I, I).

This code locks the mutex before writing to threads.txt, meaning that the output of the
threads will not interleave.

Deadlock

It is possible for mutex locks to cause deadlocks, in which two or more threads are waiting for
each other to release mutex locks.

Example

import thread.

main =>
Mutex1 = new_mutex(),
Mutex2 = new_mutex(),
Thread1 = new_thread(go, Mutex1, Mutex2),
Thread2 = new_thread(go, Mutex2, Mutex1),
Thread1.start(),
Thread2.start(),

go(First_Lock, Second_Lock) =>
acquire_mutex(First_Lock),
acquire_mutex(Second_Lock),
critical_code(), % user-defined critical section
release_mutex(Second_Lock),
release_mutex(First_Lock).

90

In this example, it is possible for Thread1 to acquire Mutex1 while Thread2 acquires
Mutex2. Then, Thread1waits forever for Thread2 to release Mutex2, while Thread2waits
forever for Thread1 to release Mutex1. This causes a deadlock. One way to avoid this problem
is to ensure that all threads acquire locks in the same order. For example, if both Thread1 and
Thread2 would try to acquire Mutex1 before Mutex2, then the thread that acquires Mutex1
can also acquire Mutex2, and can continue running while the other thread waits.

Starvation

Another problem that can occur with mutex locks is starvation, where a thread can wait forever to
access a critical section. For example, consider the following code fragment.

while (true)
acquire_mutex(Mutex),
critical_code(), % user-defined critical section
release_mutex(Mutex)

end.

If multiple threads are executing this while loop, then it is possible for the system to give
these threads different priorities. It is possible for a low-priority thread to wait forever to acquire
Mutex, while threads with higher priorities repeatedly acquire and release the mutex.

12.3.2 Semaphores

A semaphore is a structure that contains an integer. Unlike mutex locks, which only have two
states, the semaphore’s integer can any value between 0 and the maximum integer to which the
semaphore is initialized. When a thread wants to access a critical section of code, it tries to access
the semaphore by decreasing the semaphore’s integer value. If the integer value is greater than 0,
then the value is decreased by one, and the thread can access the critical section. Otherwise, the
integer value is currently 0, and the thread must wait for the integer value to increase; then, the
thread again tries to decrease the semaphore’s integer value and continue.

Picat has four built-ins that manage semaphores.

• new semaphore() = Semaphore: This function creates a new semaphore, with an
initial integer value of 1.

• new semaphore(N) = Semaphore: This function creates a new semaphore, with an
initial integer value of N .

• p semaphore(Semaphore): This predicate tries to decrease the semaphore’s integer
value. If the value is currently non-zero, then this predicate decreases the value by one, and
the current thread continues. Otherwise, the value is zero, and the current thread waits until
the value is increased, and then tries again to decrease the semaphore’s integer value.

• v semaphore(Semaphore): This predicate increases the semaphore’s integer value by
one. If the value was zero, then threads that have blocked while calling p semaphore will
try again to decrease the semaphore’s integer value.

For example, the following code modifies the print val example to use a semaphore.

91

Example

import thread, io.

main =>
FD = io.open("threads.txt", write),
Semaphore = new_semaphore(),
Thread1 = new_thread(print_val, Semaphore, 1, FD),
Thread2 = new_thread(print_val, Semaphore, 2, FD),
Thread1.start(),
Thread2.start(),
join(Thread1),
join(Thread2),
io.close(FD).

print_val(Semaphore, I, FD) =>
p_semaphore(Semaphore), % Enter critical section
output_val(I, FD),
v_semaphore(Semaphore). % Leave critical section

output_val(I, FD) => % Critical Section
io.fprintf(FD, "Thread %d is writing %d.", I, I).

Differences Between Mutex Locks and Semaphores

A mutex lock has two states: locked and unlocked. This means that only one thread can
access the shared code at any time. A semaphore can take multiple values. If a semaphore is
initialized with new semaphore(N), then up to N threads can access the shared code at any
time.

Mutex locks can cause starvation, because a mutex can only be unlocked by the thread that
locked it. Semaphores decrease the problem of starvation, because multiple threads can call
v semaphore, allowing a low-priority thread to have a greater possibility of entering a shared
section of code.

12.4 Read-Write Locks

Sometimes, when multiple threads need to access a file, using a mutex lock can have a large
amount of overhead. For example, when multiple threads need to read from a file, if each thread
uses a mutex before reading, then the other threads will need to wait, even though the file is not
being modified.

This problem is solved by using a read-write lock. A read-write lock is a structure that has
three possible states: read locked, write locked, and unlocked. Read-write locks allow multiple
readers to acquire the lock at the same time, unless a writer has acquired the lock. In other words,
at any given time, if the lock is locked, then either a single writer has acquired the lock, or one
or more readers have acquired the lock. This means that readers only need to wait when another
thread is writing.

Picat has four built-ins that manage read-write locks.

• new rwlock() = RWLock: This function creates a new read-write lock.

92

• rdlock(RWLock): This predicate is used to acquire a read-write lock for reading. If the
read-write lock is currently in the unlocked or the read locked state, then the current
thread acquires the read-write lock, and locks it for reading. Otherwise, if the read-write
lock is in the write locked state, then the current thread waits until the read-write lock
is either unlocked, or locked for reading, after which the thread tries again to acquire the
read-write lock.

• wrlock(RWLock): This predicate is used to acquire a read-write lock for writing. If
the read-write lock is currently in the unlocked state, then the current thread acquires
the read-write lock, and locks it for writing. Otherwise, if the read-write lock is in the
read locked or the write locked state, then the current thread waits until the read-
write lock is unlocked, after which the thread tries again to acquire the read-write lock.

• rwunlock(RWLock): This predicate is used to release a read-write lock. It unlocks
the read-write lock. If no other threads have acquired the read-write lock for reading, then,
waiting threads, which are trying to acquire the read-write lock, can continue running.

The following code shows how to use a read-write lock to manage two threads that are reading
from a file, and one thread that is writing to a file.

Example

import thread, io.

main =>
FD = io.open("threads.txt", append),
RWLock = new_rwlock(),
Thread1 = new_thread(write_vals, RWLock, FD),
Thread2 = new_thread(read_all, RWLock, FD),
Thread3 = new_thread(read_all, RWLock, FD),
Thread1.start(),
Thread2.start(),
Thread3.start(),
join(Thread1),
join(Thread2),
join(Thread3),
io.close(FD).

write_vals(RWLock, FD) =>
wrlock(RWLock), % Enter critical section
foreach (I in 1 .. 1000000)

io.fprintln(FD, I)
end,
wrunlock(RWLock). % Leave critical section

read_all(RWLock, FD) =>
rdlock(RWLock), % Enter critical section
Str = io.fread_file_chars(FD),
wrunlock(RWLock). % Leave critical section

93

In this example, it is possible for Thread2 and Thread3 to acquire RWLock at the same
time. However, if Thread1 has already aquired RWLock, then Thread2 and Thread3 must
wait until the lock is unlocked.

12.5 Condition Variables

Consider the following code.

Example

import thread.

main =>
get_global_map().put(X, 0),
Mutex = new_mutex(),
Thread1 = new_thread(change_map, Mutex),
Thread2 = new_thread(blastoff, Mutex),
Thread1.start(),
Thread2.start().

change_map(Mutex) =>
X1 = 0,
foreach (I in 1 .. 1000000)

process_code(), % user-defined code
acquire_mutex(Mutex),
X1 := get_global_map().get(X) + 1,
get_global_map().put(X, X1),
release_mutex(Mutex)

end.

blastoff(Mutex) =>
acquire_mutex(Mutex),
X = get_global_map.get(X),
release_mutex(Mutex),
while (X != 1000000)

acquire_mutex(Mutex),
X := get_global_map.get(X),
release_mutex(Mutex).

end,
println("Blastoff!").

In this code, Thread2 repeatedly tests the value of X in the global map, until X is set to
1000000. This is called busy waiting, and wastes CPU processing time. Furthermore, if Thread2
has a higher priority than Thread1, then Thread1 can be starved, meaning that Thread1
might never acquire Mutex, and the value of X might never reach 1000000. It would be more
efficient for Thread2 to block until X is set to 10000000 instead of repeatedly locking a mutex
and testing the global map.

This problem is solved by using a condition variable. A condition variable is used together
with a mutex. After a thread has acquired the mutex, the thread tests a condition, and waits to
be signaled by the condition variable. The condition variable suspends the thread, and unlocks

94

the mutex. When the condition variable signals the thread, the thread automatically reacquires
the mutex. This decreases the amount of busy waiting, and allows other threads to access shared
resources until the condition is true.

Picat has four built-ins that manage condition variables.

• new cv() = CV : This function creates a new condition variable.

• wait cv(CV , Mutex): When a thread calls this predicate, the thread is suspended, and
the mutex is temporarily released, until the condition variable signals the thread.

• signal cv(CV): After a thread modifies a value which is associated with a condition,
the thread can call this predicate. This predicate wakes at least one thread that is waiting for
the condition variable. The thread reacquires its mutex, and tests the condition again.

• broadcast cv(CV): After a thread modifies a value which is associated with a con-
dition, the thread can call this predicate. This predicate wakes all of the threads that are
waiting for the condition variable. Each thread reacquires its mutex, and tests the condition
again. If more than one thread has released the same mutex, then only one of the threads
can continue execution, and the other threads continue blocking until they can reacquire the
mutex.

The following code shows how to modify the blastoff example in order to eliminate busy
waiting.

Example

import thread.

main =>
get_global_map().put(X, 0),
Mutex = new_mutex(),
CV = new_cv(),
Thread1 = new_thread(change_map, Mutex, CV),
Thread2 = new_thread(blastoff, Mutex, CV),
Thread1.start(),
Thread2.start().

change_map(Mutex, CV) =>
X1 = 0,
foreach (I in 1 .. 1000000)

process_code(), % user-defined code
acquire_mutex(Mutex),
X1 := get_global_map().get(X) + 1,
get_global_map().put(X, X1),
release_mutex(Mutex)

end,
signal_cv(CV).

blastoff(Mutex, CV) =>
acquire_mutex(Mutex),
X = get_global_map.get(X),

95

release_mutex(Mutex),
while (X != 1000000)

wait_cv(CV, Mutex),
acquire_mutex(Mutex),
X := get_global_map.get(X),
release_mutex(Mutex).

end,
println("Blastoff!").

In this code, the instruction wait cv(CV, Mutex) blocks Thread2 until Thread1 calls
signal cv(CV). Then, even if Thread2 has a higher priority, and has already acquired Mutex,
the condition variable causes Thread2 to release the mutex, allowing Thread1 to run.

Note that wait cv should be called within the loop that tests the condition. It is possible for
a thread to be signaled when the condition has not yet been fulfilled. Therefore, the thread must
test the condition after the thread has been signaled. If the condition has not been fulfilled, then
the thread is blocked again, until the next time that the thread is signaled.

96

Chapter 13

Processes

As an alternative to threads, Picat has a process module, which allows the user to create new
processes.

13.1 Creating New Processes

Let’s begin with an example.

Example

import process.

ex1 =>
Id = fork(),
if Id == 0 then

printf("I am the child process, with process ID %d, ", pid()),
printf("and parent process %d.%n", ppid())

else
printf("I am the parent process, with process ID %d, ", pid()),
printf("and child process %d.%n", Id)

end.

ex2 =>
new_process(execute, "ls, -l"),
printf("I have created a new process").

The ex1 predicate uses fork in order to create a new child process. The new process has
the original process, which called fork, as its parent. The fork function returns 0 to the child
process, and returns the child’s process ID to the parent process. The child process prints its ID
followed by the parent’s ID, while the parent process prints its ID followed by the child’s ID. In
the standard output, users will see the lines in a random order.

The ex2 predicate uses new process in order to create a new process, which immediately
runs the “ls -l” command. Meanwhile, the original process prints a string to standard output.
In the standard output, users will see the parent’s output and the child’s output in a random order.

These examples use the following built-ins.

• fork() = ID: This function creates a new process, which continues running the same
code from the point where fork was called. The new process receives a separate copy

97

of the parent process’s memory, including the instantiated variables, the free variables, and
the file descriptor table. The fork function returns 0 to the new process, and returns the
process ID of the new process to the parent process. If fork fails, then it throws an error.

• new process(S, Arg1, . . ., Argn) = ID: This function creates a new process,
which will execute the call

call(S,Arg1,. . .,Argn).

The new process has a separate copy of the parent process’s memory. The new process
function returns the same values that fork returns. The exec predicate will be discussed
in Section 13.2.

• pid() = ID: This function returns the ID of the current process. The ID number is an
integer.

• ppid() = ID: This function returns the ID of the current process’s parent process. The
ID number is an integer.

13.2 Executing Other Code

The ex2 example showed how to execute different code in a child process. The following exam-
ples illustrate two other functions that allow a process to run different code.

Example

import process.

ex3 =>
Id = fork(),
if Id == 0 then

exec("ls", "-l", "*.pdf")
else

printf("I am the parent process, with process ID %d, ", pid()),
printf("and child process %d.%n", Id)

end.

ex4 =>
Id = fork(),
if Id == 0 then

execl("ls", ["-l", "*.pdf"])
else

printf("I am the parent process, with process ID %d, ", pid()),
printf("and child process %d.%n", Id)

end.

In both of these examples, the parent process forks a new process, which will run the “ls
command, with the parameters “-l” and “*.pdf”.

These examples use the following built-ins.

98

• exec(S, Arg1, . . ., Argn): This executes S with the parameters Arg1, . . ., Argn.
Unlike the call predicate, the S argument to exec either specifies a command that should
be run, or specifies the path to a file that should be run. Note that each argument, Argi, must
be a string. If exec fails, then an error is thrown.

• execl(S, ArgList): This is similar to exec, except that the second parameter is a list,
which contains the arguments that should be passed to S. Each member of ArgList must
be a string.

As shown in Chapter 9, a process’s file descriptor table stays the same when exec or execl
is called. This means that if standard input, standard output, or standard error was redirected to a
file before exec or execl is called, then the code that is executed will also redirect to the same
file.

13.3 Making Processes Wait

Sometimes, it is necessary for the parent process to wait for one or more of its child processes to
finish, allowing the parent process to determine the exit status of the child processes for which it
waits.

The process module includes two built-ins for allowing a parent process to wait for its
children.

• wait() = StatMap: This causes the parent process to wait until one of its children
finishes running. The wait function returns a map with the keys pid and status. The
pid key indicates the child process’s process number. The status key refers to an integer
that indicates the child process’s exit status. If wait fails, then an error is thrown.

• waitpid(ID) = StatMap: This causes the parent process to wait for the process that
has the specified ID number. If ID is 0 or −1, then this function is the same as wait. This
function returns a map with the keys pid and status. If waitpid fails, then an error is
thrown.

The following code demonstrates these functions.

Example

import process.

ex5 =>
foreach (I in 1..5)

if fork() == 0 then
printf("Process %d%n.", pid())

end
end,
Stat = wait(),
printf("Process %d has status %d", Stat.pid, Stat.status).

ex6 =>
L = [],
foreach (I in 1..5)

F = fork(),

99

if F == 0 then
printf("Process %d%n.", pid())

else
L := [F | L]

end
end,
Index = math.randrange(1, length(L) + 1),
Stat = waitpid(L[Index]),
printf("Process %d has status %d", Stat.pid, Stat.status).

The ex5 example causes the parent process to wait and get the exit status of one of its child
processes. The ex6 example chooses the ID of a random one of the the child processes, and passes
the ID to waitpid.

13.4 Differences Between Processes and Threads

There are a number of differences between processes and threads.
Each process runs at least one thread. In addition, each process has its own memory. This

means that each process has its own copy of instantiated variables and free variables, and that each
process has its own file descriptor table.

A thread is a light-weight process. Threads from the same process share the same memory
space. This means that each thread accesses the same copy of instantiated variables and free
variables. Furthermore, threads from the same process share the same file descriptor table.

An advantage of processes is that, since processes have their own memory space, the synchro-
nization of processes is not as difficult as the synchronization of threads. An advantage of threads
is that threads share memory, meaning that threads do not have as much memory overhead as pro-
cesses have. Another advantage of threads is that threads multitask. If a process is slow, and the
process is timeshared with other processes, then the process loses its timeslot; however, if a thread
within a process is slow, then other threads in the same process can still run.

100

Chapter 14

Constraints

Picat provides three solver modules, including cp, sat, and mip, for modeling and solving con-
straint satisfaction and optimization problems. All three of these modules implement the same set
of built-in constraints. The cp and sat modules support integer-domain variables, and the mip
module also supports real-domain variables. In order to use a solver, users must first import the
module. As the three modules have the same interface, this chapter describes the three modules
together. Figure 14.1 shows the constraint operators that are provided by Picat. Unless it is ex-
plicitly specified otherwise, the built-ins that are described in this chapter appear in all three of the
modules. In the built-ins that are presented in this chapter, an integer-domain variable can also be
an integer, unless it is explicitly specified to only be a variable.

Table 14.1: Constraint operators in Picat

Precedence Operators
Highest in, notin, #=, #!=, #>, #>=, #<, #=<, #<=

#˜
#/\
#ˆ
#\/
#=>

Lowest #<=>

A constraint program normally poses a problem in three steps: (1) generate variables; (2)
generate constraints over the variables; and (3) call solve to find a valuation for the variables
that satisfies the constraints and possibly optimizes an objective function.

Example

import cp.

queens(N) =>
Qs=new_array(N),
Qs in 1..N,
foreach (I in 1..N-1, J in I+1..N)

Qs[I] #!= Qs[J],
abs(Qs[I]-Qs[J]) #!= J-I

101

end,
solve(Qs),
writeln(Qs).

This program imports the cp module in order to solve the N -queens problem. The same program
runs with the SAT solver if sat is imported, or runs with the LP/MIP solver if mip is imported.
The predicate Qs in 1..N declares the domains of the variables. The operator #!= is used
for inequality constraints. In arithmetic constraints, expressions are treated as terms, and it is
unnecessary to enclose them with dollar-signs. The predicate solve(Qs) calls the solver in
order to solve the array of variables Qs. For cp, solve([ff],Qs), which always selects a
variable that has the smallest domain (the so-called first-fail principle), can be more efficient than
solve(Qs).

14.1 Domain Variables

A domain variable is an attributed variable that has a domain attribute. The Boolean domain is
treated as a special integer domain where 1 denotes true and 0 denotes false. Integer-domain
variables are declared with the built-in predicate V ars in Exp. The mip module also supports
real domains. Real-domain variables are declared with the built-in predicate lp in(V ars,LExp,UExp).
A variable has a default domain. The cp and sat modules assume the default domain to be
-268435455..268435455, and the mip module assumes the default domain to be from 0.0
to inf. Integer domains must be explicitly declared when mip is used.

• V ars in Exp: This predicate restricts the domain or domains of V ars to Exp. V ars and
Exp can be one of the following: (1) V ars is a single variable, and Exp is an expression that
returns a list of integers; (2) V ars is a list or an array of variables, and Exp is an expression
that returns a list of integers; (3) V ars is a tuple of variables in the form (V 1,...,V n),
and Exp is a list of tuples of integers; or (4) V ars is a list of tuples of variables, and Exp
is a list of tuples of integers. In cases (3) and (4), the predicate specifies a positive table
constraint.

• lp in(V ars, LExp, UExp): This predicate restricts the domain or domains of V ars
to the interval with the lower bound LExp and the upper bound UExp. V ars is either
one variable, a list of variables, or an array of variables, and LExp and UExp are real
expressions. The lower bound LExp must be greater than or equal to 0.

The following built-ins are provided for domain variables.

• V ars notin Exp: This predicate excludes values Exp from the domain or domains of
V ars, where V ars and Exp are the same as in V ars in Exp. This constraint cannot be
applied to real-domain variables.

• fd degree(FDV ar) = Degree: This function returns the number of propagators that
are attached to FDV ar. The return value is always 0 if sat or mip is used.

• fd disjoint(FDV ar1, FDV ar2): This predicate is true if FDV ar1’s domain and
FDV ar2’s domain are disjoint.

• fd dom(FDV ar) = List: This function returns the domain of FDV ar as a list, where
FDV ar is an integer-domain variable. If FDV ar is an integer, then the returned list con-
tains the integer itself.

102

• fd false(FDV ar, Elm): This predicate is true if the integer Elm is not an element
in the domain of FDV ar.

• fd max(FDV ar) = Max: This function returns the upper bound of the domain of
FDV ar, where FDV ar is an integer-domain variable.

• fd min(FDV ar) = Min: This function returns the lower bound of the domain of FDV ar,
where FDV ar is an integer-domain variable.

• fd min max(FDV ar, Min, Max): This predicate binds Min to the lower bound
of the domain of FDV ar, and binds Max to the upper bound of the domain of FDV ar,
where FDV ar is an integer-domain variable.

• fd next(FDV ar, Elm) = NextElm: This function returns the next element of Elm
in FDV ar’s domain. It throws an exception if Elm has no next element in FDV ar’s do-
main.

• fd prev(FDV ar, Elm) = PrevElm: This function returns the previous element
of Elm in FDV ar’s domain. It throws an exception if Elm has no previous element in
FDV ar’s domain.

• fd set false(FDV ar, Elm): This predicate excludes the element Elm from the
domain of FDV ar. If this operation results in a hole in the domain, then the domain
changes from an interval representation into a bit-vector representation, no matter how big
the domain is.

• fd size(FDV ar) = Size: This function returns the size of the domain of FDV ar,
where FDV ar is an integer-domain variable.

• fd superset(FDV ar1, FDV ar2): This predicate is true if FDV ar1’s domain is a
superset of FDV ar2’s domain.

• fd true(FDV ar, Elm): This predicate is true if the integer Elm is an element in the
domain of FDV ar.

• fd var(Term): This predicate is true if Term is an integer-domain variable.

• new fd var() = FDV ar: This function creates a new domain variable with the domain
-268435455..268435455.

14.2 Table constraints

A table constraint, or an extensional constraint, over a tuple of variables specifies a set of tuples
that are allowed (called positive) or disallowed (called negative) for the variables. A positive con-
straint takes the form DV ars in R, where DV ars is either a tuple of variables (X1, . . . , Xn)
or a list of tuples of variables, and R is a list of tuples of integers in which each tuple takes the
form (a1, . . . , an). A negative constraint takes the form DV ars notin R.

Example

The following example solves a toy crossword puzzle. One variable is used for each cell in the
grid, so each slot corresponds to a tuple of variables. Each word is represented as a tuple of

103

integers, and each slot takes on a set of words of the same length as the slot. Recall that the func-
tion char code(Char) returns the code of Char, and that the function code char(Code)
returns the character of Code.

crossword(Vars):-
Vars=[X1,X2,X3,X4,X5,X6,X7],
Words2=[(char_code(’I’),char_code(’N’)),

(char_code(’I’),char_code(’F’)),
(char_code(’A’),char_code(’S’)),
(char_code(’G’),char_code(’O’)),
(char_code(’T’),char_code(’O’)]),

Words3=[(char_code(’F’),char_code(’U’),char_code(’N’)),
(char_code(’T’),char_code(’A’),char_code(’D’)),
(char_code(’N’),char_code(’A’),char_code(’G’)),
(char_code(’S’),char_code(’A’),char_code(’G’))],

[(X1,X2),(X1,X3),(X5,X7),(X6,X7)] in Words2,
[(X3,X4,X5),(X2,X4,X6)] in Words3,
solve(Vars),
writeln([code_char(Code) : Code in Vars]).

14.3 Arithmetic Constraints

An arithmetic constraint takes the form

Exp1 Rel Exp2

where Exp1 and Exp2 are arithmetic expressions, and Rel is one of the constraint operators:
#=, #!=, #>, #>=, #<, #=<, or #<=. The operators #=< and #<= are the same, meaning less
than or equal to. An arithmetic expression is made from integers, variables, arithmetic functions,
and constraints. The following arithmetic functions are allowed: + (addition), - (subtraction),
* (multiplication), / (division), // (integer division), div (integer division), mod, ** (power),
abs, avg, min, max, and sum. Except for index notations and list comprehensions, which
are interpreted as function calls as in normal expressions, expressions in arithmetic constraints are
treated as terms, and it is unnecessary to enclose them with dollar-signs. In addition to the numeric
operators, the following functions are allowed in constraints:

• cond(BoolConstr, ThenExp, ElseExp): This expression is the same as
BoolConstr*ThenExp+(1-BoolConstr)*ElseExp.

• min(DV ars): The minimum of DV ars, where DV ars is a list or an array of domain
variables.

• max(DV ars): The maximum of DV ars, where DV ars is a list or an array of domain
variables.

• min(Exp1, Exp2): The minimum of Exp1 and Exp2.

• max(Exp1, Exp2): The maximum of Exp1 and Exp2.

• sum(DV ars): The sum of DV ars, where DV ars is a list or an array of domain variables.

When a constraint occurs in an arithmetic expression, it is 1 if it is satisfied and 0 if it is not
satisfied.

104

Example

import mip.

go =>
M={{0,3,2,3,0,0,0,0},

{0,0,0,0,0,0,5,0},
{0,1,0,0,0,1,0,0},
{0,0,2,0,2,0,0,0},
{0,0,0,0,0,0,0,5},
{0,4,0,0,2,0,0,1},
{0,0,0,0,0,2,0,3},
{0,0,0,0,0,0,0,0}},

maxflow(M,1,8).

maxflow(M,Source,Sink) =>
N=M.length,
X=new_array(N,N),
foreach(I in 1..N, J in 1..N)

X[I,J] in 0..M[I,J]
end,
foreach(I in 1..N, I!=Source, I!=Sink)

sum([X[J,I] : J in 1..N]) #= sum([X[I,J] : J in 1..N])
end,
Total #= sum([X[Source,I] : I in 1..N]),
Total #= sum([X[I,Sink] : I in 1..N]),
solve([max(Total)],X),
writeln(Total),
writeln(X).

This program uses MIP to solve the maximum integer flow problem. Given the capacity matrix
M of a directed graph, the start vertex Source, and the destination vertex Sink, the predicate
maxflow(M,Source,Sink) finds a maximum flow from Source to Sink over the graph.
When two vertices are not connected by an arc, the capacity is given as 0. The first foreach loop
specifies the domains of the variables. For each variable X[I,J], the domain is restricted to
integers between 0 and the capacity, M[I,J]. If the capacity is 0, then the variable is immediately
instantiated to 0. The next foreach loop posts the conservation constraints. For each vertex I, if it
is neither the source nor the sink, then its total incoming flow amount

sum([X[J,I] : J in 1..N])

is equal to the total outgoing flow amount

sum([X[I,J] : J in 1..N]).

The total flow amount is the total outgoing amount from the source, which is the same as the total
incoming amount to the sink.

14.4 Boolean Constraints

A Boolean constraint takes one of the following forms:

105

#˜ BoolExp
BoolExp #/\ BoolExp
BoolExp #ˆ BoolExp
BoolExp #\/ BoolExp
BoolExp #=> BoolExp
BoolExp #<=> BoolExp

BoolExp is either a Boolean constant (0 or 1), a Boolean variable (an integer-domain variable with
the domain [0,1]), an arithmetic constraint, a domain constraint (in the form of V ar in Domain
or V ar notin Domain), or a Boolean constraint. As shown in Table 14.1, the operator #˜
has the highest precedence, and the operator #<=> has the lowest precedence. Note that the
Boolean constraint operators have lower precedence than the arithmetic constraint operators. So
the constraint

X #!= 3 #/\ X#!= 5 #<=> B

is interpreted as

((X #!= 3) #/\ (X#!= 5)) #<=> B.

The Boolean constraint operators are defined as follows.

• #˜ BoolExp: This constraint is 1 iff BoolExp is equal to 0.

• BoolExp1 #/\ BoolExp2: This constraint is 1 iff both BoolExp1 and BoolExp2 are
1.

• BoolExp1 #ˆ BoolExp2: This constraint is 1 iff exactly one of BoolExp1 and BoolExp2
is 1.

• BoolExp1 #\/ BoolExp2: This constraint is 1 iff BoolExp1 or BoolExp2 is 1.

• BoolExp1 #=> BoolExp2: This constraint is 1 iff BoolExp1 implies BoolExp2.

• BoolExp1 #<=> BoolExp2: This constraint is 1 iff BoolExp1 and BoolExp2 are equiv-
alent.

14.5 Global Constraints

A global constraint is a constraint over multiple variables. A global constraint can normally be
translated into a set of smaller constraints, such as arithmetic and Boolean constraints. If the cp
module is used, then global constraints are not translated into smaller constraints; rather, they are
compiled into special propagators that maintain a certain level of consistency for the constraints.
In Picat, constraint propagators are encoded as action rules.

Picat provides the following global constraints.

• all different(FDV ars): This constraint ensures that each pair of variables in the
list or array FDV ars is different. This constraint is compiled into a set of inequality con-
straints. For each pair of variables V 1 and V 2 in FDV ars, all different(FDV ars)
generates the constraint V 1 #!= V 2.

106

• all distinct(FDV ars): This constraint is the same as all different, but it
maintains a higher level of consistency. For some problems, this constraint is faster and
requires fewer backtracks than all different, and, for some other problems, this con-
straint is slower due to the overhead of consistency checking.

• assignment(FDV ars1, FDV ars2): This constraint ensures that FDV ars2 is a
dual assignment of FDV ars1, i.e., if the ith element of FDV ars1 is j, then the jth ele-
ment of FDV ars2 is i. The constraint can be defined as:

assignment(Xs,Ys) =>
N = Xs.length,
Xs in 1..N,
Ys in 1..N,
foreach(I in 1..N, J in 1..N)

X[I] #= J #<=> Y[J] #= I
end.

• circuit(FDV ars): Let FDV ars be a list of variables [X1, X2, . . . , XN] where each
Xi has the domain 1..N . A valuation X1 = v1, X2 = v2, . . ., Xn = vn satisfies the con-
straint if 1->v1, 2->v2, ..., n->vn forms a Hamiltonian cycle. This constraint en-
sures that each variable has a different value, and that the graph that is formed by the assign-
ment does not contain any sub-cycles. For example, for the constraint circuit([X1,X2,X3,X4]),
[3,4,2,1] is a solution, but [2,1,4,3] is not, because the graph 1->2, 2->1,
3->4, 4->3 contains two sub-cycles.

• count(V , FDV ars, Rel, N): In this constraint, V and N are integer-domain vari-
ables, FDV ars is a list of integer-domain variables, and Rel is an arithmetic constraint
operator (#=, #!=, #>, #>=, #<, #=<, or #<=). Let Count be the number of elements in
FDV ars that are equal to V . The constraint is true iff Count Rel N is true. This constraint
can be defined as follows:

count(V,L,Rel,N) =>
sum([V #= E : E in L]) #= Count,
call(Rel,Count,N).

• cumulative(Starts, Durations, Resources, Limit): This constraint is useful
for describing and solving scheduling problems. The arguments Starts, Durations, and
Resources are lists of integer-domain variables of the same length, and Limit is an integer-
domain variable. Let Starts be [S1, S2, . . ., Sn], Durations be [D1, D2, . . .,
Dn], and Resources be [R1, R2, . . ., Rn]. For each job i, Si represents the start
time, Di represents the duration, and Ri represents the units of resources needed. Limit
is the limit on the units of resources available at any time. This constraint ensures that the
limit cannot be exceeded at any time.

• diffn(RectangleList): This constraint ensures that no two rectangles in RectangleList
overlap with each other. A rectangle in an n-dimensional space is represented by a list of
2 × n elements [X1, X2, . . ., Xn, S1, S2, . . ., Sn], where Xi is the starting
coordinate of the edge in the ith dimension, and Si is the size of the edge.

• disjunctive tasks(Tasks): Tasks is a list of terms. Each term has the form
disj tasks(S1,D1,S2,D2), where S1 and S2 are two integer-domain variables, and

107

D1 and D2 are two positive integers. This constraint is equivalent to posting the disjunctive
constraint S1+D1 #=< S2 #\/ S2+D2 #=< S1 for each term disj tasks(S1,D1,S2,D2)
in Tasks, but it may be more efficient, because it converts the disjunctive tasks into global
constraints.

• element(I, List, V): This constraint is true if the Ith element of List is V , where I
and V are integer-domain variables, and List is a list of integer-domain variables.

• global cardinality(List, Pairs): Let List be a list of integer-domain variables
[X1, . . ., Xd], and Pairs be a list of pairs [K1-V1, . . ., Kn-Vn], where each key
Ki is a unique integer, and each Vi is an integer-domain variable. The constraint is true if
every element of List is equal to some key, and, for each pair Ki-Vi, exactly Vi elements
of List are equal to Ki. This constraint can be defined as follows:

global_cardinality(List,Pairs) =>
foreach(Key=V in Pairs)

sum([E#=Key : E in List]) #= V
end.

• neqs(NeqList): NeqList is a list of inequality constraints of the form X #!= Y , where
X and Y are integer-domain variables. This constraint is equivalent to the conjunction of
the inequality constraints in NeqList, but it extracts all distinct constraints from the
inequality constraints.

• serialized(Starts, Durations): This constraint describes a set of non-overlapping
tasks, where Starts and Durations are lists of integer-domain variables, and the lists have
the same length. Let Os be a list of 1s that has the same length as Starts. This constraint is
equivalent to cumulative(Starts,Durations,Os,1).

• subcircuit(FDV ars): This constraint is the same as circuit(FDV ars), except
that not all of the vertices are required to be in the circuit. If the ith element of FDV ars is
i, then the vertex i is not part of the circuit.

14.6 Solver Invocation

• solve(Options, V ars): This predicate calls the imported solver to label the variables
V ars with values, where Options is a list of options for the solver. The options will be
detailed below. For cp, this predicate can be called multiple times for a problem, and each
call can backtrack in order to find multiple solutions. However, for mip and sat, this
predicate can be called only once for a problem, and no call to it can backtrack.

• solve(V ars): This predicate is the same as solve([], V ars).

• indomain(V ar): This predicate is only accepted by cp. It is the same as solve([],
[V ar]).

• indomain down(V ar): This predicate is only accepted by cp. It is the same as solve([down],
[V ar]).

108

14.6.1 Common Solving Options

The following options are accepted by all three of the solvers.

• min(V ar): Minimize the variable V ar.

• max(Exp): Maximize the variable V ar.

• dump(Exp): Dump the model in some format to the standard output. If cp is used, the
output is a Picat predicate; if mip is used, then the output is in the CPLEX lp format; if
sat is used, then the output is in CNF. Note that the predicate solve(Options,V ars)
preprocesses the accumulated constraints before dumping the model. If any constraint fails
during preprocessing, then the predicate solve(Options,V ars) fails, and no model will
be dumped. Also note that the solver is not called to solve the problem, and that the variables
V ars can only be instantiated during preprocessing.

• dump(File): Dump the model to File.

14.6.2 Solving Options for cp

The cp module also accepts the following options:

• backward: The list of variables is reversed first.

• constr: Variables are first ordered by the number of attached constraints.

• degree: Variables are first ordered by degree, i.e., the number of connected variables.

• down: Values are assigned to variables from the largest to the smallest.

• ff: The first-fail principle is used: the leftmost variable with the smallest domain is selected.

• ffc: The same as with the two options: ff and constr.

• ffd: The same as with the two options: ff and degree.

• forward: Choose variables in the given order, from left to right.

• inout: The variables are reordered in an inside-out fashion. For example, the variable list
[X1,X2,X3,X4,X5] is rearranged into the list [X3,X2,X4,X1,X5].

• leftmost: The same as forward.

• max: First, select a variable whose domain has the largest upper bound, breaking ties by
selecting a variable with the smallest domain.

• min: First, select a variable whose domain has the smallest lower bound, breaking ties by
selecting a variable with the smallest domain.

• reverse split: Bisect the variable’s domain, excluding the lower half first.

• split: Bisect the variable’s domain, excluding the upper half first.

• updown: Values are assigned to variables from the values that are nearest to the middle of
the domain.

109

Chapter 15

Sockets

Sockets allow communication across computer networks. Picat’s socket module enables both
connection-oriented and connectionless communication. This module supports communication in
the Internet domain and in the Unix domain. All Picat programs that use sockets must import the
socket module.

15.1 Connection-Oriented Communication

Connection-oriented communication uses TCP, the Transmission Control Protocol. Before data
is transmitted, a client and a server establish a full-duplex connection. TCP is reliable, meaning
that it checks for errors during transmission, and that it sequences packets that arrive in the wrong
order. The following code skeleton shows how a server and a client communicate over TCP.

Example

import socket, process.

server =>
FD = socket(inet, stream),
Port = bind(FD, inet, inaddr_any, 0),
listen(FD), % wait for connection
do % infinite loop

Client = accept(FD),
P = process.fork(),
if P == 0 then % child process

echo(Client.client_fd)
else % parent process

close(Client.client_fd)
end

while (true).

client(Address, Port) =>
FD = socket(inet, stream),
connect(FD, inet, Address, Port),
hello_to_server(FD),
close(FD).

110

echo(Client) => % Server code to communicate with client
% Begin communication
send(Client, "Enter Input:"),
Str = recv(Client), % wait for client input
send(Client, Str),
% End communication
close(Client).

hello_to_server(FD) => % Client code to communicate with server
% Begin communication
Str = recv(FD), % wait for server’s message
println(Str)
send(FD, "Hello"),
Str := recv(FD),
println(Str).
% End communication

The server performs the following steps:

1. The server creates a communication endpoint, using the socket function.

2. The server associates itself with a port number, using bind.

3. The server waits for connections, using the listen predicate.

4. When a connection request arrives, the server handles the connection, using the accept
function.

5. For connection-oriented communication, multiple messages can be exchanged. Therefore,
if the server is capable of receiving multiple requests from different clients, the server can
fork a new process for each request. The new process communicates with the client by using
send and recv, while the parent process closes its copy of the client’s file descriptor, and
continues listening for other clients. Otherwise, the server receives one request at a time,
meaning that there is only one process, which finishes communicating with one client before
listening for another client.

The client performs the following steps:

1. The client creates a communication endpoint, using the socket function.

2. The client tries to connect to the server, using the connect predicate.

3. After the server accepts the connection request, the client communicates with the server by
using send and recv.

4. When communication is complete, the client closes the socket’s file descriptor.

The following functions and predicates allow a server and a client to communicate over TCP:

• socket(Domain, Type) = FD: This returns a file descriptor for the communication
endpoint. The Domain parameter can be inet, inet6, or unix. For communication
over the Internet domain, use either inet or inet6. The domain unix allows com-
munication over the Unix domain. The domain inet uses IP version 4, and the domain
inet6 uses IP version 6. The Type parameter can be one of the following five atoms:

111

stream, dgram, raw, seqpacket, or rdm. The stream atom allows connection-
oriented communication over TCP. The dgram atom allows connectionless communication
over UDP. The other atoms are used as follows: raw is used for checking communication
paths, seqpacket allows reliable and bidirectional transmission of packets, and rdm is
used for reliably-delivered messages.

• tcp socket() = FD: This performs the same operation as socket(inet, stream).
It creates a TCP socket that uses IPv4.

• bind(FD, INet, Address, Port): This associates a communication endpoint with
a port number. The FD parameter is the file descriptor for the communication endpoint
that the socket function returns. In the Internet domain, the INet parameter must be
either inet, which specifies that IPv4 is used, or inet6, which specifies that IPv6 is used.
The Address parameter is a string that specifies the IP address that will be used for the
connections. If IPv4 is used, then Address is an address string in dotted-decimal notation,
such as “127.0.0.1”. If IPv6 is used, then Address is an address string in hexadecimal
notation, such as “2001:DB8:0:0:8:800:200C:417A”. The Address parameter can be the
atom inaddr any, which indicates that the server will listen for connections on any of the
network interfaces. It can also be the atom localhost, which represents the address of
the local machine. The Port parameter is an integer that specifies the port that should be
used; set Port to 0 in order to allow the operating system to pick the port that should be
used.

• tcp bind(FD, Address, Port): This is the same as bind(FD, inet, Address,
Port). It uses IPv4.

• listen(FD, Backlog): This is only used by the server. Listening causes the server
to wait for incoming connection requests. The FD parameter is the server’s file descrip-
tor, which the socket function returns. The Backlog parameter specifies the maximum
number of pending client connection requests.

• listen(FD): This is only used by the server. This function uses a default backlog of 5.

• accept(FD) = Client: This is only used by the server. This function accepts incoming
connections. The FD parameter is the server’s file descriptor, which the socket function
returns. The accept function returns a map with the keys client fd, client domain,
client address, and client port. The key client fd stores the file descriptor
that is used to communicate with the client. The key client domain indicates the do-
main that the client is using to communicate, as specified in the socket function. The key
client address is a string that stores the client’s IP address. The key client port
stores the port number that the client is using to receive data from the server.

• connect(FD, INet, Address, Port): This is only used by the client. It causes
the client to send a connection request to the server. The FD parameter is the client’s file
descriptor, which the socket function returns. In the Internet domain, the INet parameter
is either the atom inet, specifying that IPv4 is used, or the atom inet6, specifying that
IPv6 is used. The Address parameter is a string that specifies the server’s IP address, as de-
scribed in the explanation of bind. The Address parameter can be the atom localhost
in order to represent the address of the local machine. The connect predicate requires
a Port parameter in the Internet domain, specifying the number of the port on which the
server will receive the connection.

112

• tcp connect(FD, Address, Port): This performs the same operation as connect(FD,
inet, Address, Port). It connects TCP sockets that use IPv4.

• send(FD, Message) = NBytes: This is used for reliable communication. It blocks
until it is able to send the message. The FD parameter is the file descriptor that the socket
function returns. The Message parameter is a string that one endpoint is transmitting to the
other endpoint. The send function returns the number of bytes that were sent.

• send(FD, Message, Flags) = NBytes: The Flags parameter is a list of options.
The options can be oob, dontroute, dontwait, and nosignal. The option oob
is used to indicate out-of-band urgent data. The dontroute option indicates that the
data should not be sent over a router. The dontwait option indicates that, instead of
blocking, if send cannot immediately transmit the message, then it should throw an error.
The nosignal option prevents a signal from being raised if a message is sent to a host that
is not receiving. Windows only supports the oob and dontroute options.

• recv(FD) = Message: This is used for reliable communication. It blocks until data
arrives. The FD parameter is the file descriptor that the socket function returns. The
recv function blocks until data is received, and returns the message that was received. The
recv function returns a message string.

• recv(FD, Flags) = Message: The Flags parameter is a list of options. The options
can be oob, peek, waitall(Length), and dontwait. The option oob is used to re-
ceive out-of-band urgent data. The peek atom indicates that the receiver should look at the
message without removing it from the incoming message buffer. The waitall(Length)
option indicates that the function should block until Length bytes are received. The option
dontwait indicates that the function should return immediately, even if data is unavail-
able.

• close(FD): This performs the same operation as the close predicate in the iomodule.

Binding and connecting in the Unix domain will be discussed in Section 15.4.
The endpoints can also communicate by using the built-ins from the io module. However,

further management is required. For example, the fread functions are non-blocking. If the
other communication endpoint did not yet send data, the fread functions would return eof
immediately.

The following example shows how a client and server would send data to each other by using
io built-ins.

Example

import io.

echo(Client) =>
% Begin communication
io.fprintln(Client, "Enter Input:"),
Str = io.fread_file(Client),
while (Str == eof)

Str := io.fread_file(Client)
end,
io.fprintln(Client, Str),
% End communication

113

close(Client).

hello_to_server(FD) =>
% Begin communication
Str = io.fread_file(FD),
while (Str == eof)

Str := io.fread_file(FD)
end,
println(Str),
io.fprintln(FD, "Hello"),
Str = io.fread_file(FD),
while (Str == eof)

Str := io.fread_file(FD)
end,
println(Str).
% End communication

15.2 Connectionless Communication

There are times when connection-oriented communication has too much overhead. The transmis-
sion reliability is not necessary, faster connectionless communication can be used. Connectionless
communication occurs over UDP, the User Datagram Protocol. Unlike TCP, UDP does not re-
quire connection establishment and termination. UDP is unreliable, meaning that there can be
errors during transmission, and data can arrive out of order. UDP can be used with applications
that only require a simple request and response, such as DNS or NTP, multicasting communica-
tion, and real-time applications, such as video. The following code skeleton shows how a server
and a client communicate over UDP.

Example

import socket.

server =>
FD = socket(inet, dgram),
Port = bind(FD, inet, inaddr_any, 0),
while (true) % infinite loop

Message = recvfrom(FD, inet),
sendto(FD, "Message Received", inet,

Message.address, Message.port)
end.

client(Address, Port) =>
FD = socket(inet, dgram),
MyPort = bind(FD, inet, inaddr_any, 0),
sendto(FD, "Did you get this message?",

inet, Address, Port),
Message = recvfrom(FD, inet),
close(FD).

The server performs the following steps:

114

1. The server creates a communication endpoint, using the socket function.

2. The endpoint associates itself with a port number, using bind.

3. In an infinite loop, the following occurs:

(a) The server uses recvfrom to wait for an incoming message.

(b) The server uses sendto to respond to the client’s message.

The client performs the following steps:

1. The client creates a communication endpoint, using the socket function.

2. The client endpoint associates itself with a port number, using bind.

3. The client uses sendto to send a message to the server.

4. The client uses recvfrom to wait for the server’s response.

5. When communication is complete, the client closes the socket’s file descriptor.

Note that in the TCP example, both the client and the server used the client’s socket’s file de-
scriptor for send and recv, while in the UDP example, each endpoint uses its own file descriptor
for sendto and recvfrom.

Communication between a client and a server over UDP uses the following functions and
predicates:

• socket(Domain, Type) = FD: For UDP, the socket’s Type parameter is dgram.

• udp socket() = FD: This performs the same operation as socket(inet, dgram).

• bind(FD, INet, Address, Port): This associates a communication endpoint with
a port number, as discussed in Section 15.1. Note that for UDP, both the server and the
client must call bind.

• udp bind(FD, Address, Port): This performs the same operation as bind(FD,
inet, Address, Port). It uses IPv4.

• sendto(FD, Message, Domain, Address, Port) = NBytes: This is used for
unreliable communication. This function blocks until it is able to send the message. It can
use either IPv4 or IPv6. The FD parameter is the file descriptor that the socket func-
tion returns. Unlike the send function, where the domain is known from connect and
accept, the sendto function must specify the domain. The Domain parameter can be
either inet or inet6. The Message parameter is a string that one endpoint is transmit-
ting to the other endpoint. The Address parameter is a string that stores the IP address of
the other endpoint, as described in the explanation of bind. The Address parameter can be
the atom localhost in order to represent the address of the current machine. The Port
parameter stores the number of the port that the other endpoint is using to communicate. The
sendto function returns the number of bytes that were sent. See Section 15.4 for sendto
in the Unix domain.

• sendto(FD, Message, Flags, Domain, Address, Port) = NBytes: The Flags
parameter is a list of options. The options can be oob, dontroute, dontwait, and
nosignal. These options were discussed in the description of send in Section 15.1.
Windows only supports oob and dontroute.

115

• recvfrom(FD, Domain) = Message: This is used for unreliable communication.
It can use either IPv4 or IPv6. The FD parameter is the file descriptor that the socket
function returns. Unlike the recv function, where the domain is known from connect
and accept, the recvfrom function must specify the domain. The Domain parame-
ter can be inet or inet6. In the Unix domain, it can also be unix. The recvfrom
function blocks until data is received, and returns the message that was received. Unlike
the recv function, the recvfrom function returns a map. Since the communication is
connectionless, information about the other communication endpoint is not known until a
message is received. Therefore, the message is stored in a map, which contains information
about the sender. In the Internet domain, the recvfrom function returns a map with the
keys address, port, and message. The key address is a string that stores the IP
address of the other endpoint. The key port stores the number of the port that the other
endpoint is using to communicate. The key message contains the actual message string
that was received. See Section 15.4 for recvfrom in the Unix domain.

• recvfrom(FD, Flags, Domain) = Message: The Flags parameter is a list of
options. The options can be oob, peek, waitall(Length), and dontwait. These
options were discussed in the description of recv in Section 15.1. Windows only supports
oob and peek.

• close(FD)

15.3 Multicasting

Multicasting allows a group of receivers to receive a single message. Multicasting is implemented
using UDP. The following example shows how multicasting communication can occur.

Example

import socket.

sender(GroupAddress, GroupPort) =>
FD = socket(inet, dgram),
while (true) % infinite loop

sendto(FD, "Group Message", inet,
GroupAddress, GroupPort)

end.

receiver(GroupAddress, GroupPort) =>
Messages = new_array(100),
FD = socket(inet, dgram),
MyPort = bind(FD, inet, inaddr_any, 0),
joingroup(GroupAddress),
foreach (I in 1 .. 100) % receive 100 messages

Messages[I] = recvfrom(FD, inet)
end,
leavegroup(GroupAddress),
close(FD).

A sender performs the following steps:

116

1. In order to send a message to a group, a sender creates a UDP communication endpoint,
using the socket function.

2. The sender uses the sendto function, specifying the group’s IP address. This will send a
single message to every member of the group.

Each receiver performs the following steps:

1. A receiver creates a UDP communication endpoint, using the socket function.

2. The receiver chooses a port through which to receive group messages, using the bind func-
tion.

3. The receiver requests to join the group, using the joingroup predicate.

4. The receiver uses the recvfrom function to listen for incoming datagrams.

5. If a receiver would like to leave the group, it uses the leavegroup predicate. In the above
example, the receiver leaves the group after receiving 100 group messages.

6. After the receiver leaves the group, it closes the socket’s file descriptor.

Multicasting uses the following functions and predicates:

• socket(Domain, Type) = FD

• udp socket() = FD: This performs the same operation as socket(inet, dgram).

• bind(FD, INet, Address, Port): The receiver associates a communication end-
point with a port number. Note that the sender is not expecting a response, so the sender
does not need to bind itself to a port.

• udp bind(FD, Address, Port): This performs the same operation as bind(FD,
inet, Address, Port). It uses IPv4.

• joingroup(GroupAddress): This allows a receiver to request to join a group. The
GroupAddress parameter is a string specifying the group’s IP address in dotted-decimal
notation (in IPv4) or hexadecimal notation (in IPv6). The joingroup predicate performs
the same operation as setsockopt(FD, ip, addmembership, GroupAddress).
For a further discussion of setsockopt, see Section 15.5.1.

• leavegroup(GroupAddress): This allows a receiver to leave a group. The GroupAddress
parameter is a string specifying the group’s IP address. The leavegroup predicate per-
forms the same operation as setsockopt(FD, ip, dropmembership, GroupAddress).
For a further discussion of setsockopt, see Section 15.5.1.

• sendto(FD, Message, Domain, Address, Port) = NBytes: This is used for
unreliable communication. This function blocks until it is able to send the message. The
sendto function returns the number of bytes that were sent.

• sendto(FD, Message, Flags, Domain, Address, Port) = NBytes: The Flags
parameter is a list of options. The options can be oob, dontroute, dontwait, and
nosignal.

• recvfrom(FD, Domain) = Message: This is used for unreliable communication.
The recvfrom function blocks until data is received, and returns the a map that contains
the message that was received.

117

• recvfrom(FD, Flags, Domain) = Message: The Flags parameter is a list of
options. The options can be oob, peek, waitall(Length), and dontwait.

• close(FD)

15.4 Communication on the Unix Domain

The Unix domain is used for inter-process communication on the Unix operating system. The
processes are located on the same host. The following is an example of communication in the
Unix domain.

Example

import socket.

server(Name) =>
FD = socket(unix, stream),
bind(FD, unix, Name),
listen(FD), % wait for connection
Client = accept(FD),
hello_to_client(Client),
close(FD).

client(Name) =>
FD = socket(unix, stream),
connect(FD, unix, Name),
hello_to_server(FD),
close(FD).

hello_to_client(Client) => % Server code to communicate with client
% Begin communication
send(Client, "Enter Input:"),
Str = recv(Client), % wait for client input
send(Client, Str),
% End communication
close(Client).

hello_to_server(FD) => % Client code to communicate with server
% Begin communication
Str = recv(FD), % wait for server’s message
println(Str)
send(FD, "Hello"),
Str := recv(FD),
println(Str).
% End communication

The server and the client perform the same steps as they do in the TCP example. They can
also communicate over UDP. In this example, the server only listens for one request, so it does not
fork a child process, and when the server completes, it closes its file descriptor. This example is
similar to the first example of the chapter.

118

Communication between a server and a client in the Unix domain uses the following functions
and predicates:

• socket(Domain, Type) = FD: The file descriptor FD represents a communication
endpoint, which is a process in the Unix domain.

• unix socket() = FD: This performs the same operation as socket(unix, stream).

• bind(FD, Unix, Name): Since the processes are located on the same host, the sock-
ets do not need to be identified by addresses and ports in the bind predicate. Instead, Unix
domain sockets are identified by a file name in the file system. Therefore, the process is
bound to a file name using bind(FD, unix, Name). The unix atom is the only
value that is allowed for the Unix parameter.

• unix bind(FD, Name): This performs the same operation as bind(FD, unix,
Name).

• listen(FD, Backlog)

• listen(FD)

• accept(FD) = Client

• connect(FD, Unix, Name): Since the processes are located on the same host, the
sockets do not need to be identified by addresses and ports in the connect predicate.
Instead, Unix domain sockets are identified by a file name in the file system. Therefore,
the client process connects to the server process by using the server process’s file name in
the connect(FD, Unix, Name) predicate. The unix atom is the only value that is
allowed for the Unix parameter.

• unix connect(FD, Name): This performs the same operation as connect(FD,
unix, Name).

• send(FD, Message) = NBytes: This is used for reliable communication. This func-
tion blocks until it is able to send the message. The send function returns the number of
bytes that were sent.

• send(FD, Message, Flags) = NBytes: The Flags parameter is a list of options.
The options can be oob, dontroute, dontwait, and nosignal.

• recv(FD) = Message: This is used for reliable communication. It blocks until data
arrives. The recv function returns a message string.

• recv(FD, Flags) = Message: The Flags parameter is a list of options. The options
can be oob, peek, waitall(Length), and dontwait.

• sendto(FD, Message, Name) = NBytes: This is used for unreliable communi-
cation. This function blocks until it is able to send the message. Note that sendto in the
Unix domain uses the name of a file. The sendto function returns the number of bytes that
were sent.

• sendto(FD, Message, Flags, Name) = NBytes: The Flags parameter is a
list of options. The options can be oob, dontroute, dontwait, and nosignal.

119

• recvfrom(FD, Domain) = Message: This is used for unreliable communication.
In the Unix domain, the recvfrom function returns a map with the keys name, and
message. The key name is a string that stores the file name to which the process is bound.
The key message contains the actual message string that was received.

• recvfrom(FD, Flags, Domain) = Message: The Flags parameter is a list of
options. The options can be oob, peek, waitall(Length), and dontwait.

• close(FD)

15.5 Other Socket Functions and Predicates

15.5.1 Socket Options

Picat allows users to access and to modify socket options. For example, the Multicasting section
showed how to modify a socket’s options to allow it to join or to leave a group. The following
example shows how to read a few of a socket’s default attributes.

Example

import socket.

show_attributes =>
println("TCP/IP socket"),
attributes(inet, stream),
println("UDP/IP socket"),
attributes(inet, dgram),
println("TCP/IPv6 socket"),
attributes(inet6, stream).

attributes(Domain, Type) =>
FD = socket(Domain, Type),
Live = getsockopt(FD, socket, keepalive),
println(Val),
OOB = getsockopt(FD, socket, oobinline),
println(OOB),
Delay = getsockopt(tcp, nodelay),
println(Delay),
Multicast = getsockopt(ipv6, multicasthops),
println(Multicast),
close(FD).

The following functions are used to access and to modify the socket options:

• setsockopt(FD, Level, Option, V alue)

• getsockopt(FD, Level, Option) = V alue

The Level parameter is an atom indicating the protocol level at which the Option parameter is de-
fined. The Level parameter can be one of the following atoms: socket, tcp, ipx, ip, or ipv6.
The Option parameter is also an atom. For a list of available options for each level, see Appendix
F. Note that some options can only be used in getsockopt, and that the getsockopt function
returns the string “Non-existent” if it does not recognize the Option parameter.

120

15.5.2 Host Information

Picat provides other socket functions that allow users to extract information about Internet hosts.
The following example shows how to connect to www.probp.com by using gethostbyname.

Example

import socket.

probp(Port) =>
FD = socket(inet, stream),
Server = gethostbyname("http://www.probp.com")
if length(Server.addresses) > 0 then

Address = Server.addresses[1],
connect(FD, inet, Address, Port),
hello_to_server(FD) % Communicate with the server

end,
close(FD).

The following functions are used to extract Internet host information:

• gethostbyname(Name) = Host

• gethostbyaddr(Addr) = Host

These functions perform a DNS query. They return a map with the keys names and hosts. The
key names is a list of names for the host, and the key addresses is a list of IP addresses by
which the host is accessible. If the query does not have any results, then the lists will be empty.

In the gethostbyname and gethostbyaddr functions, the parameter can be replaced by
the atom localhost, in order to extract information about the current machine.

Picat provides two other functions for querying the canonical name and a single address for a
host. The following example shows how to connect to www.probp.com by using getaddr.

Example

import socket.

probp(Port) =>
FD = socket(inet, stream),
Address = getaddr("http://www.probp.com"),
connect(FD, inet, Address, Port),
hello_to_server(FD), % Communicate with the server
close(FD).

The following functions are used to extract a single name or address for a host:

• getaddr(Name) = Addr

• getcanonicalname(Addr) = Name

In the getaddr and getcanonicalname functions, the parameter can be replaced by the atom
localhost, in order to extract information about the current machine. Unlike the gethostbyname
and gethostbyaddr functions, if the query does not return any results, then the getaddr and
getcanonicalname functions will throw an error.

121

15.5.3 Services

Some services, like Telnet and FTP, have pre-defined port numbers. The following functions allow
users to look up information about a service, such as the port number that it uses:

• getservbyname(Name) = Service: This function matches a service for any proto-
col. It returns a map, with the keys name, aliases, port, and protocol. The key
name is the name of the service. The key aliases is a list of alternative names for the
service. The key port is the port number to use, in order to access the service. The key
protocol is a string, indicating the protocol to use in order to access the service.

• getservbyname(Name, Type) = Service: This function matches a service for a
specific protocol. The Type parameter is either the atom tcp or the atom udp.

• getservport(Name) = Port: This function returns the port number to use in order
to access the service.

These functions throw an error if the service cannot be found.

122

Chapter 16

External Language Interface with C

Picat has a bi-directional interface with C, through which Picat programs can call functions written
in C, and C programs can query Picat programs. C programs that use this interface must include
the file "picat.h" in the directory $PICATDIR/Emulator.

16.1 Calling C from Picat

16.1.1 Term Representation

A term is represented by a word that contains a value and a tag. The tag distinguishes the
type of the term. Floating-point numbers are represented as special structures in the form of
$float(I1,I2,I3)$, where I1, I2, and I3 are integers.

The value of a term is an address, except when the term is an integer (in this case, the value
represents the integer itself). The location to which the address points is dependent on the type
of the term. The address in a reference points to the referenced term. An unbound variable is
represented by a self-referencing pointer. The address in an atom points to the record for the atom
symbol in the symbol table. The address in a structure, f(t1, . . . , tn), points to a block of n + 1
consecutive words, where the first word points to the record for the functor, f/n, in the symbol
table, and the remaining n words store the components of the structure. The address in a list,
[H|T], points to a block of two consecutive words, where the first word stores the car, H, and the
second word stores the cdr, T.

16.1.2 Fetching Arguments of Picat Calls

C functions that define a Picat predicate should not take any argument. The function
picat get call arg(i,arity) is used to get the arguments in the current Picat call:

• TERM picat get call arg(int i, int arity): Fetch the ith argument, where
arity is the arity of the predicate, and i must be an integer between 1 and arity. The
validity of the arguments is not checked, and an invalid argument may cause fatal errors.

16.1.3 Testing Picat Terms

The following functions are provided for testing Picat terms. They return PICAT TRUE when
they succeed and PICAT FALSE when they fail.

• int picat is atom(TERM t): Term t is an atom.

• int picat is integer(TERM t): Term t is an integer.

123

• int picat is float(TERM t): Term t is a floating-point number.

• int picat is nil(TERM t): Term t is nil.

• int picat is list(TERM t): Term t is a list.

• int picat is structure(TERM t): Term t is a structure (but not a list).

• int picat is compound(TERM t): True if either picat is list(t)
or picat is structure(t) is true.

• int picat is unifiable(TERM t1, TERM t2): t1 and t2 are unifiable. This
is equivalent to the Picat call not(not(t1=t2)).

• int picat is identical(TERM t1, TERM t2): t1 and t2 are identical. This
function is equivalent to the Picat call t1==t2.

16.1.4 Converting Picat Terms into C

The following functions convert Picat terms to C. If a Picat term does not have the expected type,
then the global C variable exception is set. A C program that uses these functions must check
whether exception is set in order to see whether data are converted correctly. The converted
data are only correct when exception is NULL.

• int picat get integer(TERM t): Convert the Picat integer t into C.
picat is integer(t) must be true; otherwise 0 is returned before exception is set
to integer expected.

• double picat get float(TERM t): Convert the Picat float t into C.
picat is float(t)must be true; otherwise exception is set to number expected,
and 0.0 is returned. This function must be declared before any use.

• (char *) picat get name(TERM t): Return a pointer to the string that is the name
of term t. Either picat is atom(t) or picat is structure(t) must be true;
otherwise, exception is set to illegal arguments, and NULL is returned. This
function must be declared before any use.

• int picat get arity(TERM t): Return the arity of term t. Either picat is atom(t)
or picat is structure(t) must be true; otherwise, 0 is returned, with exception
being set to illegal arguments.

16.1.5 Manipulating and Writing Picat Terms

• int picat unify(TERM t1,TERM t2): Unify two Picat terms t1 and t2. The
result is PICAT TRUE if the unification succeeds, or PICAT FALSE if the unification fails.

• TERM picat get arg(int i,TERM t): Return the ith argument of term t. The
condition picat is compound(t) must be true, and i must be an integer that is be-
tween 1 and t’s arity; otherwise, exception is set to illegal arguments, and the
Picat integer 0 is returned.

• TERM picat get car(TERM t): Return the car of the list t. picat is list(t)
must be true; otherwise exception is set to list expected, and the Picat integer 0 is
returned.

124

• TERM get cdr(TERM t): Return the cdr of the list t. picat is list(t) must be
true; otherwise exception is set to list expected, and the Picat integer 0 is returned.

• void picat write(TERM t): Send term t to the current output stream.

16.1.6 Building Picat Terms

• TERM picat build var(): Return a free Picat variable.

• TERM picat build integer(int i): Return a Picat integer whose value is i.

• TERM picat build float(double f): Return a Picat float whose value is f.

• TERM picat build atom(char *name): Return a Picat atom whose name is name.

• TERM picat build nil(): Return an empty Picat list.

• TERM picat build list(): Return a Picat list whose car and cdr are free variables.

• TERM picat build structure(char *name, int arity): Return a Picat struc-
ture whose functor is name, arity is arity, and the arguments are all free variables.

16.1.7 Registering Predicates that were Defined in C

The following function registers a predicate that is defined by a C function.

insert_cpred(char *name, int arity, int (*func)())

The first argument is the predicate name, the second argument is the arity, and the third argument
is the name of the function that defines the predicate. The function cannot take any argument. As
described above, picat get call arg(i,arity) is used to fetch arguments from the Picat
call.

For example, the following registers a predicate whose name is "p", and whose arity is 2.

extern int p();
insert_cpred("p", 2, p)

The C function’s name does not need to be the same as the predicate name.
Predicates that are defined in C should be registered after the Picat engine is initialized, and

before any call is executed. One good place for registering predicates is the Cboot() function in
the file cpreds.c, which registers all of the built-ins of Picat.

Example

Consider the Picat predicate:

p(a,X) => X=$f(1)$.
p(b,X) => X=[1].
p(c,X) => X=1.2.

where the first argument is given and the second is unknown. The following steps show how to
define this predicate in C, and how to make it callable from Picat.

Step 1 . Write a C function to implement the predicate. The following shows a sample:

125

#include "picat.h"

p(){
TERM a1, a2, a, b, c, f1, l1, f12;
char *name_ptr;

/* prepare Picat terms */
a1 = picat_get_call_arg(1, 2); /* first argument */
a2 = picat_get_call_arg(2, 2); /* second argument */
a = picat_build_atom("a");
b = picat_build_atom("b");
c = picat_build_atom("c");
f1 = picat_build_structure("f", 1); /* f(1) */
picat_unify(picat_get_arg(1, f1), picat_build_integer(1));
l1 = picat_build_list(); /* [1] */
picat_unify(picat_get_car(l1), picat_build_integer(1));
picat_unify(picat_get_cdr(l1), picat_build_nil());
f12 = picat_build_float(1.2); /* 1.2 */

/* code for the clauses */
if (!picat_is_atom(a1))

return PICAT_FALSE;
name_ptr = picat_get_name(a1);
switch (*name_ptr){
case ’a’:

return (picat_unify(a1, a) ? picat_unify(a2, f1) : PICAT_FALSE);
case ’b’:

return (picat_unify(a1, b) ? picat_unify(a2, l1) : PICAT_FALSE);
case ’c’:

return (picat_unify(a1, c) ? picat_unify(a2, f12) : PICAT_FALSE);
default: return PICAT_FALSE;
}

}

Step 2 Insert the following two lines into Cboot() in cpreds.c:

extern int p();
insert_cpred("p", 2, p);

Step 3 Recompile the system. Now, p/2 is in the group of built-ins in Picat.

16.2 Calling Picat from C

In order to make Picat predicates callable from C, one must replace the main.c file in the emu-
lator with a new file that starts his/her own application. The following function must be executed
before any call to Picat predicates is executed:

initialize_bprolog(int argc, char *argv[])

In addition, the environment variable BPDIR must be correctly set to the home directory where
Picat was installed. The function initialize bprolog() allocates all of the stacks that

126

are used in Picat, initializes them, and loads the byte code file bp.out into the program area.
PICAT ERROR is returned if the system cannot be initialized.

A query can be a string or a Picat term, and a query can return one or more solutions.

• int picat call string(char *goal): This function executes the Picat call, as
represented by the string goal. The return value is PICAT TRUE if the call succeeds,
PICAT FALSE if the call fails, and PICAT ERROR if an exception occurs. Examples:

picat_call_string("load(myprog)")
picat_call_string("X is 1+1")
picat_call_string("p(X,Y), q(Y,Z)")

• picat call term(TERM goal): This function is similar to picat call string,
except that it executes the Picat call, as represented by the term goal. While picat call string
cannot return any bindings for variables, this function can return results through the Picat
variables in goal. Example:

TERM call = picat_build_structure("p", 2);
picat_call_term(call);

• picat mount query string(char *goal): Mount goal as the next Picat goal to
be executed.

• picat mount query string(TERM goal): Mount goal as the next Picat goal to
be executed.

• picat next solution(): Retrieve the next solution of the current goal. If no goal is
mounted before this function, then the exception illegal predicate will be raised,
and PICAT ERROR will be returned as the result. If no further solution is available, then
the function returns PICAT FALSE. Otherwise, the next solution is found.

Example

This example program retrieves all of the solutions of the query member(X,[1,2,3]).

#include "bprolog.h"

main(int argc, char *argv[])
{

TERM query;
TERM list0, list;
int res;

initialize_bprolog(argc, argv);
/* build the list [1,2,3] */
list = list0 = picat_build_list();
picat_unify(picat_get_car(list), picat_build_integer(1));
picat_unify(picat_get_cdr(list), picat_build_list());
list = picat_get_cdr(list);
picat_unify(picat_get_car(list), picat_build_integer(2));

127

picat_unify(picat_get_cdr(list), picat_build_list());
list = picat_get_cdr(list);
picat_unify(picat_get_car(list), picat_build_integer(3));
picat_unify(picat_get_cdr(list), picat_build_nil());

/* build the call member(X,list) */
query = picat_build_structure("member", 2);
picat_unify(picat_get_arg(2, query), list0);

/* invoke member/2 */
picat_mount_query_term(query);
res = picat_next_solution();
while (res == PICAT_TRUE) {

picat_write(query);
printf("\n");
res = picat_next_solution();

}
}

In order to run the program, users need to replace the content of the file main.c in $BPDIR/Emulator
with this program, and then recompile the system. The newly compiled system will give the fol-
lowing output when it is started.

member(1,[1,2,3])
member(2,[1,2,3])
member(3,[1,2,3])

128

Appendix A

Appendix: Math

Picat provides a mathmodule, which has common mathematical constants and functions. In order
to use the examples in this chapter, first type import math on the command line.

A.1 Constants

The math module provides four constants.

• e = 2.71828

• pi = 3.14159

• inf: This represents positive infinity.

• ninf: This represents negative infinity.

A.2 Functions

The math module contains mathematical functions that serve a number of different purposes.
Note that the arguments must all be numbers. If the arguments are not numbers, then Picat will
throw an error.

A.2.1 Sign and Absolute Value

The following functions deal with the positivity and negativity of numbers.

• sign(X) = V al: This function determines whether X is positive or negative. If X is
positive, then this function returns 1. If X is negative, then this function returns −1. If X is
0, then this function returns 0.

• abs(X) = V al: This function returns the absolute value of X . If X ≥ 0, then this
function returns X . Otherwise, this function returns −X .

Example

picat> Val1 = sign(3), Val2 = sign(-3), Val3 = sign(0)
Val1 = 1
Val2 = -1
Val3 = 0
picat> Val = abs(-3)
Val = 3

129

A.2.2 Rounding and Truncation

The math module includes the following functions for converting a real number into the integers
that are closest to the number.

• ceiling(X) = V al: This function returns the closest integer that is greater than or
equal to X .

• floor(X) = V al: This function returns the closest integer that is less than or equal to
X .

• round(X) = V al: This function returns the integer that is closest to X .

• truncate(X) = V al: This function removes the fractional part from a real number.

• modf(X) = (FractV al, IntV al): This function splits a real number into its frac-
tional part and its integer part.

Example

picat> Val1 = ceiling(-3.2), Val2 = ceiling(3)
Val1 = -3
Val2 = 3
picat> Val1 = floor(-3.2), Val2 = floor(3)
Val1 = -4
Val2 = 3
picat> Val1 = round(-3.2), Val2 = round(3),

Val3 = round(-3.5), Val4 = round(3.5)
Val1 = -3
Val2 = 3
Val3 = -4
Val4 = 4
picat> Val1 = truncate(-3.2), Val2 = truncate(3)
Val1 = -3
Val2 = 3
picat> (F1, I1) = modf(3.2), (F2, I2) = modf(3)
F1 = 2
I1 = 3
F2 = 0
I2 = 3

A.2.3 Exponents, Roots, and Logarithms

The following functions provide exponentiation, root, and logarithmic functions. Note that, in the
logarithmic functions, if X ≤ 0, then an error is thrown.

• pow(X, Y) = V al: This function returns XY . It does the same thing as X ∗ ∗Y .

• exp(X) = V al: This function returns eX .

• sqrt(X) = V al: This function returns the square root of X . Note that the mathmodule
does not support imaginary numbers. Therefore, if X < 0, then this function throws an
error.

130

• cbrt(X) = V al: This function returns the cube root of X .

• nthrt(N, X) = V al: This function returns the N th root of X . Note that, if N is even,
and X < 0, then this function throws an error.

• log(X) = V al: This function returns loge(X).

• log10(X) = V al: This function returns log10(X).

• log2(X) = V al: This function returns log2(X).

• log(B, X) = V al: This function returns logB(X).

Example

picat> P1 = pow(2, 5), P2 = exp(2)
P1 = 32
P2 = 7.38906
picat> S = sqrt(1), C = cbrt(27), N = nthrt(5, 32)
S = 1.0
C = 3.0
N = 2.0
picat> E = log(7), T = log10(7), T2 = log2(7), B = log(7, 7)
E = 1.94591
T = 0.845098
T2 = 2.80735
B = 1.0

A.2.4 Converting Between Degrees and Radians

The math module has two functions to convert between degrees and radians.

• radians(Degree) = Radian: This function converts from degrees to radians.

• degrees(Radian) = Degree: This function converts from radians to degrees.

Example

picat> R = radians(180)
R = 3.14159
picat> D = degrees(pi)
D = 180.0

A.2.5 Trigonometric Functions

The math module provides the following trigonometric functions.

• sin(X) = V al: This function returns the sine of X , where X is given in radians.

• cos(X) = V al: This function returns the cosine of X , where X is given in radians.

• tan(X) = V al: This function returns the tangent of X , where X is given in radians. If
the tangent is undefined, such as at pi / 2, then this function throws an error.

131

• sec(X) = V al: This function returns the secant of X , where X is given in radians. If
cos(X) is 0, then sec(X) throws an error.

• csc(X) = V al: This function returns the cosecant of X , where X is given in radians. If
sin(X) is 0, then csc(X) throws an error.

• cot(X) = V al: This function returns the cotangent of X , where X is given in radians.
If tan(X) is 0, or if tan(X) is undefined, then cot(X) throws an error.

• asin(X) = V al: This function returns the arc sine of X , in radians. The returned value
is in the range [-pi / 2, pi / 2]. X must be in the range [−1, 1]; otherwise, this
function throws an error.

• acos(X) = V al: This function returns the arc cosineof X , in radians. The returned
value is in the range [0, pi]. X must be in the range [−1, 1]; otherwise, this function
throws an error.

• atan(X) = V al: This function returns the arc tangent of X , in radians. The returned
value is in the range [-pi / 2, pi / 2].

• atan2(X, Y) = V al: This function returns the arc tangent of Y / X , in radians. X
and Y are coordinates. The returned value is in the range [-pi, pi]. Note that, if both X
and Y are 0, then this function throws an error.

Example

picat> S = sin(pi), C = cos(pi), T = tan(pi)
S = 0.0
C = -1.0
T = 0.0
picat> S = sec(pi / 4), C = csc(pi / 4), T = cot(pi / 4)
S = 1.41421
C = 1.41421
T = 1.0
picat> S = asin(0), C = acos(0),

T = atan(0), T2 = atan2(-10, 10)
S = 0.0
C = 1.5708
T = 0.0
T2 = -0.785398

A.2.6 Hyperbolic Functions

The math module provides the following hyperbolic functions.

• sinh(X) = V al: This function returns the hyperbolic sine of X , where X is given in
radians.

• cosh(X) = V al: This function returns the hyperbolic cosine of X , where X is given in
radians.

• tanh(X) = V al: This function returns the hyperbolic tangent of X , where X is given
in radians.

132

• sech(X) = V al: This function returns the hyperbolic secant of X , where X is given in
radians. If cosh(X) is 0, then sech(X) throws an error.

• csch(X) = V al: This function returns the hyperbolic cosecant of X , where X is given
in radians.

• coth(X) = V al: This function returns the hyperbolic cotangent of X , where X is given
in radians. If tanh(X) is 0, then coth(X) throws an error.

• asinh(X) = V al: This function returns the arc hyperbolic sine of X , in radians.

• acosh(X) = V al: This function returns the arc hyperbolic cosine of X , in radians. If
X ≤ 1, then this function throws an error.

• atanh(X) = V al: This function returns the arc hyperbolic tangent of X , in radians. X
must be in the range (−1, 1); otherwise, this function throws an error.

Example

picat> S = sinh(pi), C = cosh(pi), T = tanh(pi)
S = 11.54874
C = 11.59195
T = 0.99627
picat> S = sech(pi / 4), C = csch(pi / 4),

T = coth(pi / 4)
S = 0.75494
C = 1.15118
T = 1.52487
picat> S = asinh(0), C = acosh(1), T = atanh(0)
S = 0.0
C = 0.0
T = 0.0

A.2.7 Random Numbers

The following functions provide access to a random number generator.

• random = V al: This function returns a random number, in the range [0, 1).

• random(Seed) = V al: This function returns a random number, in the range [0, 1). At
the same time, it changes the seed of the random number generator.

• randrange(From, To) = V al: This function returns a random integer in the range
[From, To).

• randrange(From, Step, To) = V al: This function returns a random integer in the
range [From, To). The integer will be equal to From+K ∗ Step, for some integer K.

133

Appendix B

Appendix: Date and Time

Picat’s datetime module provides built-ins for manipulating and retrieving the date and time.

B.1 Representing Date and Time

Picat represents the date and time as a structure of integers. The structure has the form $date time(Y ear,
Month, Day, Hour, Minute, Second, MilliSecond)$.

Variable Range of Values
Y ear Four-digit year
Month 1-12
Day 1-31
Hour 0-23
Minute 0-59
Second 0-60
MilliSecond 0-999

In the Month variable, 1 represents January, and 12 represents December. In the Hour vari-
able, 0 represents 12 AM, and 23 represents 11 PM. In the Second variable, the value 60 represents
a leap second.

The following function creates a new datetime object, which is initialized to the date and time
at which the object is created.

• current datetime() = DateT ime

The following example creates a date time structure at 10:56:23.899 PM on October 24,
2014.

Example

picat> import datetime.

picat> D = current_datetime().
D = date_time(2014, 10, 24, 22, 56, 23, 899)

B.2 Extracting Values

The following functions extract a single field from the date time structure.

134

• year(DateT ime) = Y ear

• month(DateT ime) = Month

• day(DateT ime) = Day

• hour(DateT ime) = Hour

• minute(DateT ime) = Minute

• second(DateT ime) = Second

• millisecond(DateT ime) = MilliSecond

Each of these functions returns an integer.

B.3 Changing the Date and Time

There are two ways to change the date and time: adding, and setting.

B.3.1 Adding

The following functions add values to a date time in order to create a new date time. There
is one function to add (or subtract) values to each variable in the date time structure.

• add years(DateT ime, Y ears) = DateT ime

• add months(DateT ime, Months) = DateT ime

• add days(DateT ime, Days) = DateT ime

• add hours(DateT ime, Hours) = DateT ime

• add minutes(DateT ime, Minutes) = DateT ime

• add seconds(DateT ime, Seconds) = DateT ime

• add milliseconds(DateT ime, MilliSeconds) = DateT ime

The following example creates a date time structure at 10:56:23.899 PM on October 24,
2014, and then adds values to the structure.

picat> import datetime.

picat> D = current_datetime(), D1 = add_seconds(D, 5),
D2 = add_days(D, -2), D3 = add_minutes(D, 20).

D = date_time(2014, 10, 24, 22, 56, 23, 899)
D1 = date_time(2014, 10, 24, 22, 56, 28, 899)
D2 = date_time(2014, 10, 22, 22, 56, 23, 899)
D3 = date_time(2014, 10, 24, 23, 16, 23, 899)

D1 adds 5 seconds to the time. D2 subtracts two days from the date; this is done by passing
a negative number to add days. D3 adds 20 minutes to the time; note that this also makes the
hour change.

135

B.3.2 Setting

The following predicates modify a date time structure, allowing users to set each variable to a
specified value.

• set year(DateT ime, Y ear)

• set month(DateT ime, Month)

• set day(DateT ime, Day): If Day is larger than the number of days in the month,
then an error is thrown.

• set hour(DateT ime, Hour)

• set minute(DateT ime, Minute)

• set second(DateT ime, Second): If Second is set to 61, but Second is not a valid
leap second, then an error is thrown.

• set millisecond(DateT ime, MilliSecond)

Note that the second argument to each predicate must be within the valid integer range for the
specified variable. Otherwise, an error is thrown.

The following example creates a date time structure at 10:56:23.899 PM on October 24,
2014, and then sets values in the structure.

Example

picat> import datetime.

picat> D = current_datetime(), set_second(D, 5),
set_day(D, 2), set_minute(D, 20).

D = date_time(2014, 10, 2, 22, 20, 5, 899)

B.4 Converting to Strings

The following functions convert sections of the date time structure to a string.

• day string(DateT ime) = String: This function returns the day of the week (Sun-
day, Monday, . . .) for the specified date, in the system’s locale. This is the same as
dt to fstring("%A", DateT ime) .

• month string(DateT ime) = String: This function returns the month of the year
(January, February, . . .) for the specified date, in the system’s locale. This is the same as
dt to fstring("%A", DateT ime).

• time string(DateT ime) = String: This function returns the 12-hour time in the
format HH:MM AM/PM.

• dt to fstring(Format, DateT ime) = String: This function converts the date time
structure to a string, depending on the Format parameter, which is a string that contains
format characters in the form %specifier. For details, see Appendix E.

The following examples create a date time structure at 10:56:23.899 PM on October 24,
2014, and convert the structure to strings.

136

Example

picat> import datetime.

picat> D = current_datetime(), Day = day_string(D),
Month = month_string(D), Time = time_string(D).

D = date_time(2014, 10, 2, 22, 20, 5, 899)
Day = "Friday"
Month = "October"
Time = "10:56 PM"

picat > D = current_datetime(), DS = dt_to_fstring("%B %d, %Y", D).
D = date_time(2014, 10, 2, 22, 20, 5, 899)
DS = "October 24, 2014"

picat > D = current_datetime(), DS = dt_to_fstring("%d %B %Y", D).
D = date_time(2014, 10, 2, 22, 20, 5, 899)
DS = "24 October 2014"

B.5 Other Built-ins

• compare(DateT ime1, DateT ime2) = Result: This function compares two date time
structures. If the first date time is earlier than the second date time, then this function re-
turns −1. If the first date time is later than the second date time, then this function returns
1. Otherwise, the two date times are equal, and this function returns 0.

• is leap year(DateT ime): This predicate determines whether the Y ear of the date time
structure is a leap year.

137

Appendix C

Appendix: Lexical Grammar

/* Picat lexical grammar rules
[...] means optional
{...} means 0, 1, or more occurrences
"..." means as-is
\/* ... */ comment

Tokens to be returned:

Token-type lexeme
=====================
ATOM a string of chars of the atom name
VARIABLE a string of chars of the variable name
INTEGER an integer literal
FLOAT a float literal
STRING a string of chars
OPERATOR a string of chars in the operator
SEPARATOR one of "(" ")" "{" "}" "[" "]"

*/
line_terminator ->

the LF character, also known as "newline"
the CR character, also known as "return"
the CR character followed by the LF character

input_char ->
unicode_input_char but not CR or LF

comment ->
traditional_comment
end_of_line_comment

traditional_comment ->
"/*" comment_tail

comment_tail ->
"*" comment_tail_star
not_star comment_tail

138

comment_tail_star ->
"/"
"*" comment_tail_star
not_star_not_slash comment_tail

not_star ->
input_char but not "*"
line_terminator

not_star_not_slash ->
input_char but not "*" or "/"
line_terminator

end_of_line_comment ->
"%" {input_char} line_terminator

white_space ->
the SP character, also known as "space"
the HT character, also known as "horizontal tab"
the FF character, also known as "form feed"
line_terminator

token ->
atom_token
variable_token
integer_literal
real_literal
string_literal
operator_token
separator_token

atom_token ->
small_letter {alphanumeric_char}
single_quoted_token

variable_token ->
anonymous_variable
named_variable

anonymous variable ->
"_"

named_variable ->
"_" alphanumeric {alphanumeric}
capital_letter {alphanumeric}

alphanumeric ->
alpha_char

139

decimal_digit

alpha_char ->
underscore_char
letter

letter ->
small_letter
capital_letter

single_quoted_token ->
"’" {string_char} "’"

string_literal ->
"\"" {string_char} "\""

string_char ->
input_char
escape_sequence

integer_literal ->
decimal_numeral
hex_numeral
octal_numeral
binary_numeral

decimal_numeral ->
"0"
non_zero_digit [decimal_digits]
non_zero_digit underscores decimal_digits

decimal_digits ->
decimal_digit
decimal_digit [decimal_digits_and_underscores] decimal_digit

non_zero_digit ->
one of "1" "2" "3" "4" "5" "6" "7" "8" "9"

decimal_digits_and_underscores ->
decimal_digit_or_underscore
decimal_digits_and_underscores decimal_digit_or_underscore

decimal_digit_or_underscore ->
decimal_digit
"_"

underscores ->
"_"
underscores "_"

140

hex_numeral ->
"0x" hex_digits
"0X" hex_digits

hex_digits ->
hex_digit
hex_digit [hex_digits_and_underscores] hex_digit

hex_digits_and_underscores ->
hex_digit_or_underscore
hex_digits_and_underscores hex_digit_or_underscore

hex_digit_or_underscore ->
hex_digit
"_"

octal_numeral ->
"0O" octal_digits
"0o" underscores octal_digits

octal_digits ->
octal_digit
octal_digit [octal_digits_and_underscores] octal_digit

octal_digits_and_underscores ->
octal_digit_or_underscore
octal_digits_and_underscores octal_digit_or_underscore

octal_digit_or_underscore ->
octal_digit
"_"

binary_numeral ->
"0b" binary_digits
"0B" binary_digits

binary_digits:
binary_digit
binary_digit [binary_digits_and_underscores] binary_digit

binary_digits_and_underscores ->
binary_digit_or_underscore
binary_digits_and_underscores binary_digit_or_underscore

binary_digit_or_underscore:
binary_digit
"_"

141

real_literal ->
decimal_digits "." [decimal_digits] [exponent_part]
"." decimal_digits [exponent_part]
decimal_digits exponent_part

exponent_part ->
exponent_indicator signed_integer

exponent_indicator ->
"e"
"E"

signed_integer ->
[sign] decimal_digits

sign ->
"+"
"-"

separator ->
one of "(" ")" "{" "}" "[" "]"

operator ->
one of

"=", "!=", ">", ">=", "<", "<=", "=<", "..", "!"
",", ";", ":", "." ". " (dot-whitespace)
"=>", "?=>", "==", "!==",":=" "|" "$" "@"
"/\" "\/" "˜" "ˆ" "<<" ">>"
"+" "-" "*" "**" "/" "/>" "/<" "ˆ"
"#=", "#!=", "#>", "#>=", "#<", "#<=", "#=<",
"#/\" "#\/" "#˜" "#ˆ" "#=>" "#<=>"

small_letter ->
one of "a" "b" ... "z"

capital_letter ->
one of "A" "B" ... "Z"

decimal_digit ->
one of "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"

hex_digit ->
one of

"0" "1" "2" "3" "4" "5" "6" "7" "8" "9"
"a" "b" "c" "d" "e" "f" "A" "B" "C" "D" "E" "F"

octal_digit ->
one of "0" "1" "2" "3" "4" "5" "6" "7"

142

binary_digit ->
one of "0" "1"

escape_sequence ->
"\b" /* \u0008: backspace BS */
"\t" /* \u0009: horizontal tab HT */
"\n" /* \u000a: linefeed LF */
"\f" /* \u000c: form feed FF */
"\r" /* \u000d: carriage return CR */
"\"" /* \u0022: double quote " */
"\’" /* \u0027: single quote ’ */
"\\" /* \u005c: backslash \ */
octal_escape
unicode_escape

octal_escape ->
"\" octal_digit octal_digit octal_digit

unicode_escape ->
"\u" hex_digit hex_digit hex_digit hex_digit
"\U" hex_digit hex_digit hex_digit hex_digit

hex_digit hex_digit hex_digit hex_digit

143

Appendix D

Appendix: Syntax Grammar

/* Picat syntax grammar rules
[...] means optional
{...} means 0, 1, or more occurrences
(a | b) means choice
"..." means a token
%... one-line comment
input tokens:

atom
variable
integer
float

operator
separator
eor is "." followed by a white space

*/
program ->

[module_declaration]
{import_declaration}
program_body

program_body ->
{include_declaration | predicate_definition
| function_definition | actor_definition}

module_declaration ->
"module" atom eor

import_declaration ->
import import_item {"," import_item} eor

import_item ->
atom ["." atom ["/" integer]]

include_declaration ->
"include " string {, string} eor

144

predicate_definition ->
{predicate_directive} predicate_rule_or_fact {predicate_rule_or_fact}

function_definition ->
{function_directive} function_rule_or_fact {function_rule_or_fact}

actor_definition ->
["private"] action_rule {(action_rule

| nonbacktrackable_predicate_rule)}

function_directive ->
"private"
"table"

predicate_directive ->
"private"
"table" ["(" table_mode {"," table_mode} ")"]
"index" "(" index_mode {"," index_mode} ")"

index_mode ->
"+"
"-"

table_mode ->
"+"
"-"
"min"
"max"

cardinality_limit ->
"cardinality" "(" integer ")"

predicate_rule_or_fact ->
predicate_rule
predicate_fact

function_rule_or_fact ->
function_rule
function_fact

predicate_rule ->
head ["," condition] ("=>" | "?=>") body eor

nonbacktrackable_predicate_rule ->
head ["," condition] "=>" body eor

predicate_fact ->
head eor

145

head ->
atom ["(" [term {"," term}] ")"]

function_rule ->
head "=" variable ["," condition] "=>" body eor

function_fact ->
head "=" argument eor

action_rule ->
head ["," condition] "," "{" event_pattern "}" => body eor

event_pattern ->
term {’,’ term}

condition -> goal

body -> goal

goal ->
disjunctive_goal

argument ->
negative_goal

disjunctive_goal ->
disjunctive_goal ";" conjunctive_goal
conjunctive_goal

conjunctive_goal ->
conjunctive_goal "," negative_goal
negative_goal

negative_goal ->
"not" negative_goal
equiv_constr

equiv_constr ->
equiv_constr "#<=>" impl_constr
impl_constr

impl_constr ->
impl_constr "#=>" or_constr
or_constr

or_constr ->
or_constr "#\/" xor_constr
xor_constr

146

xor_constr ->
xor_constr "#ˆ" and_constr
and_constr

and_constr ->
and_constr "#/\" not_constr
not_constr

not_constr ->
"#˜" not_constr
enclosed_goal

enclosed_goal ->
"if" goal "then" goal {"elseif" goal "then" goal} "else" goal "end"
"foreach" "(" iterator {"," (iterator | condition)} ")" goal "end"
"while" "(" goal ")" ["loop"] goal "end"
"loop" goal "while" "(" goal ")"
"try" goal catch_clause {catch_clause} ["finally" goal] "end"
expression {bin_rel_op expression}

catch_clause ->
"catch" "(" exception_pattern ")" goal

exception_pattern ->
term

bin_rel_op ->
"="
"!="
":="
"=="
"!=="
">"
">="
"<"
"=<"
"<="
"in"
"#="
"#!="
"#>"
"#>="
"#<"
"#=<"
"#<="

expression ->
range_expression.

147

range_expression ->
or_expression [".." or_expression [".." or_expression]]

or_expression ->
xor_expression
or_expression "\/" xor_expression

xor_expression ->
and_expression
xor_expression "ˆ" and_expression % bit-wise xor

and_expression ->
shift_expression
and_expression "/\" shift_expression

shift_expression ->
additive_expression
shift_expr ("<<" | ">>" | ">>>") additive_expression

additive_expression ->
multiplicative_expression
additive_expression "+" multiplicative_expression
additive_expression "++" multiplicative_expression
additive_expression "-" multiplicative_expression

multiplicative_expression ->
unary_expression
multiplicative_expression "*" unary_expression
multiplicative_expression "/" unary_expression
multiplicative_expression "//" unary_expression
multiplicative_expression "/>" unary_expression
multiplicative_expression "/<" unary_expression
multiplicative_expression "div" unary_expression
multiplicative_expression "mod" unary_expression
multiplicative_expression "rem" unary_expression

unary_expression ->
power_expression
"+" unary_expression
"-" unary_expression
"˜" unary_expression % bit-wise complement

power_expression ->
primary_expression ["**" unary_expression]

primary_expression ->
"(" goal ")"
variable "[" argument ["," argument] "]"

148

% index notation
variable "@" term "@"

% as-pattern, can only occur in terms
variable
integer
float
atom_or_call
list_expression
array_expression
function_call
lambda_term
term_constructor
primary_expression "." atom_or_call

% dot-notation, primary can’t be lambda

atom_or_call ->
atom ["(" [argument {"," argument}] ")"]

list_expression ->
"[" argument list_expression_suffix "]"

list_expression_suffix ->
":" iterator {"," (iterator | condition)} % list comprehension
{"," argument} ["|" argument]

array_expression ->
"{" argument {"," argument} "}"

function_call ->
[primary_expression "."] atom "(" [argument {"," argument}] ")"

lambda_term ->
"lambda" "(" variable_list, argument ")"

variable_list ->
"[" [variable {"," variable}] "]"

term_constructor ->
"$" goal "$"

/* a term has the same form as a goal except that
(1) a term contains no index notations;
(2) a term contains no dot notations (O.E);
(3) a term contains no lambda terms;
(4) a term contains no loops;
(5) a term contains no range_expressions;
(6) a term contains no list comprehensions;
(7) a term can contain an as-pattern in the form Var@Term@.

*/

149

Appendix E

Appendix: Formats

E.1 Formatted Printing

The following table shows the specifiers that can be used in formats for the writef, fwritef,
printf, and fprintf predicates.

Specifier Output
%% Percent Sign
%c Character
%d Signed Decimal Integer
%e Scientific Notation, with Lowercase e
%E Scientific Notation, with Uppercase E
%f Decimal Real Number
%g Shorter of %e and %f
%G Shorter of %E and %f
%i Signed Decimal Integer
%n Platform-independent Newline
%o Unsigned Octal Integer
%s String
%u Unsigned Decimal Integer
%w Term
%x Unsigned Lowercase Hexadecimal Integer
%X Unsigned Uppercase Hexadecimal Integer

150

E.2 Formatted Date and Time

The following table shows that specifiers that can be used in formats for the dt to fstring
function in the datetime module.

Specifier Output
%% Percent Sign
%a Locale-dependent Weekday Name, Abbreviated
%A Locale-dependent Weekday Name
%b Locale-dependent Month Name, Abbreviated
%B Locale-dependent Month Name
%c Locale-dependent Date and Time
%d Two-digit Day of the Month
%H Two-digit Hour (24-hour Time)
%I Two-digit Hour (12-hour Time)
%j Three-digit Day of the Year
%m Two-digit Month
%M Two-digit Minute
%p AM or PM
%S Two-digit Second
%w One-digit Day of the Week
%x Locale-dependent Date
%X Locale-dependent Time
%y Two-digit Year
%Y Four-digit Year

151

Appendix F

Appendix: Socket Options

This appendix contains the list of options for setsockopt and getsockopt, sorted by level.
Note that some options can only be used in getsockopt.

Socket Level

• acceptconn

• bindtodevice

• broadcast

• bspstate

• conditionalaccept

• connecttime

• debug

• domain

• dontlinger

• dontroute

• error

• exclusiveaddruse

• groupid

• grouppriority

• keepalive

• linger

• maxmsgsize

• oobinline

• portscalability

• protocolinfo

• prototype

• pvdconfig

• rcvbuf

• rcvlowat

• rcvtimeo

• reuseaddr

• sndbuf

• sndlowat

• sndtimeo

• type

• updateacceptcontext

TCP Level

• nodelay

152

IPX Level

• address

• addressnotify

• dstype

• extendedaddress

• filterptype

• getnetinfo

• genetinfonorip

• immediatespxack

• maxadapternum

• maxsize

• ptype

• receivebroadcast

• recvhdr

• reripnetnumber

• spxgetconnectionstatus

• stopfilterptype

IP Level

• addmembership

• dropmembership

IPv6 Level

• multicasthops

• multicastif

• multicastloop

• unicasthops

153

Appendix G

Appendix: The Library Modules

Module basic (imported by default)

• X = Y
• X != Y
• X == Y
• X !== Y
• X := Y
• X > Y
• X >= Y
• X < Y
• X =< Y
• X <= Y
• Term1 ++ Term2 = List

• [X : I in D,. . .] = List
• L .. U = List
• L .. Step .. U = List

• -X = Y
• +X = Y
• X + Y = Z
• X - Y = Z
• X * Y = Z
• X / Y = Z
• X // Y = Z
• X div Y = Z
• X /< Y = Z
• X /> Y = Z
• X ** Y = Z
• X mod Y = Z
• X rem Y = Z
• ˜X = Y
• X \/ Y = Z
• X /\ Y = Z
• X ˆ Y = Z
• X << Y = Z
• X >> Y = Z
• X >>> Y = Z
• V ar[Index1,. . .,Indexn]
• Goal1,Goal2
• Goal1;Goal2
• acyclic term(Term)

• append(X,Y ,Z) (nondet)
• apply(S,Arg1,. . .,Argn) = V al

• arity(Term)
• array(Term)
• atom(Term)
• atom chars(Atm) = String

• atom codes(Atm) = List
• atomic(Term)
• attr var(Term)
• avg(List) = V al

• between(From,To,X) (nondet)
• call(S,Arg1,. . .,Argn)
• char(Term)
• char code(Char) = Int
• code char(Code) = Char
• compare terms(Term1,Term2) = Res

• compound(Term)
• copy term(Term1) = Term2

• delete(List,X) = ResList
• delete all(List,X) = ResList
• different terms(Term1,Term2)
• digit(Char)
• fail
• findall(Template,S,Arg1,. . .,Argn) =
List
• float(Term)
• flush
• freeze(X,Goal)
• get(MapOrAttrV ar,Key) = V al

• get global map() = Map

• get heap map() = Map

• ground(Term)
• has key(MapOrAttrV ar,Key)
• hash code(Term) = Int
• insert(List,Index,Elm) = ResList
• insert all(List,Index,AList) = ResList
• integer(Term)

154

• keys(MapOrAttrV ar) = List

• length(Compound) = Len

• list(Term)
• lowercase(Char)
• map(Term)
• map to list(Map) = List

• max(List) = V al
• max(X,Y) = V al
• membchk(Term,List)
• member(Term,List) (nondet)
• min(List) = V al
• min(X,Y) = V al
• name(Struct) = Name
• new array(D1,. . .,Dn) = Arr

• new list(N) = List
• new map(PairsList) = Map

• new struct(Name,IntOrList) = Struct
• nonvar(Term)
• not Call
• number(Term)
• number chars(Num) = String

• number codes(Num) = List
• number vars(Term,N0) = N1

• once Call
• parse term(String) = Term)
• parse term(String,Term,V ars)
• parse term(String,Term,V ars,RString)
• post event(X,Event)
• post event any(X,Event)
• post event bound(X)
• post event dom(X,Event)
• post event ins(X)
• print(Term)
• printf(Term,Args . . .)
• println(Term)
• put(MapOrAttrV ar,Key,V al)
• read char(N) = String

• read char() = V al
• read int() = Int
• read line() = String

• read real() = Real
• read term() = Term
• read token() = String

• read unicode char(N) = String

• read unicode char() = V al
• readln() = String

• real(Term)
• remove dups(List) = ResList

• repeat (nondet)

• reverse(List) = ResList

• select(X,List,ResList) (nondet)

• sort(List) = SList

• sort down(List) = SList

• string(Term)

• struct(Term)

• sublist(List,Start,End) = SubList

• subsumes(Term1,Term2)

• sum(List) = V al

• throw E

• to array(List) = Array

• to binary string(Int) = String

• to codes(Term) = List

• to fstring(Format,Term) = String

• to hex string(Int) = String

• to integer(Num) = Int

• to list(Struct) = List

• to lowercase(String) = LString

• to oct string(Int) = String

• to real(Num) = Real

• to string(Term) = String

• to uppercase(String) = UString

• true
• unnumber vars(Term1) = Term2

• uppercase(Char)

• values(MapOrAttrV ar) = List

• var(Term)

• variant(Term1,Term2)

• vars(Term) = V ars

• write(Term)

• write byte(Bytes)

• writef(Term,Args . . .)

• writeln(Term)

• zip(List1,List2,. . .,Listn) = List

155

Module math

• abs(X) = V al

• acos(X) = V al

• acosh(X) = V al

• asin(X) = V al

• asinh(X) = V al

• atan(X) = V al

• atan2(X,Y) = V al

• atanh(X) = V al

• cbrt(X) = V al

• ceiling(X) = V al

• cos(X) = V al

• cosh(X) = V al

• cot(X) = V al

• coth(X) = V al

• csc(X) = V al

• csch(X) = V al

• degrees(Radian) = Degree

• e = 2.71828
• exp(X) = V al

• floor(X) = V al

• inf
• log(X) = V al

• log(B,X) = V al

• log10(X) = V al

• log2(X) = V al

• modf(X) = (FractV al,IntV al)
• ninf
• nthrt(N,X) = V al

• pi = 3.14159

• pow(X,Y) = V al

• radians(Degree) = Radian

• random = V al
• random(Seed) = V al

• randrange(From,Step,To) = V al

• randrange(From,To) = V al

• round(X) = V al

• sec(X) = V al

• sech(X) = V al

• sign(X) = V al

• sin(X) = V al

• sinh(X) = V al

• sqrt(X) = V al

• tan(X) = V al

• tanh(X) = V al

• truncate(X) = V al

Module io

• at end of stream(FD)
• close(FD)
• dup(FD) = NewFD

• dup2(FromFD,ToFD)
• eof
• flush(FD)
• fprint(FD,Term)

• fprintf(FD,Format,Args . . .)

• fprintln(FD,Term)

• fread byte(FD) = V al

• fread byte(FD,N) = List

• fread char(FD) = V al

• fread char(FD,N) = String

• fread file bytes(FD) = List

• fread file chars(FD) = String

• fread int(FD) = Int

• fread line(FD) = String

• fread real(FD) = Real

• fread term(FD) = Term

• fread token(FD) = String

• fread unicode char(FD) = V al

• fread unicode char(FD,N) = String

• freadln(FD) = String

• fwrite(FD,Term)
• fwrite byte(Bytes)

• fwritef(FD,Format,Args . . .)

• fwriteln(FD,Term)
• getpos(FD) = Pos

• mkfifo(Path)
• mkfifo(Path,Mode)
• mkpipe() = FD Map

• mktmp() = FD

• open(Name) = FD

• open(Name,Mode) = FD

• peek byte(FD) = V al

• peek char(FD) = V al

• peek int(FD) = Int

• peek real(FD) = Real

• peek unicode char(FD) = V al

• rewind(FD)
• seek(FD,Offset,From)

• setpos(FD,Pos)

• sizeof char() = Size
• stderr
• stdin
• stdout

156

Module os

• atime(Path) = DateT ime
• block special(Path)
• cd(Path)
• char special(Path)
• chdir(Path)
• chmod(Path,Mode)
• cp(Path1,Path2)
• create(Path)
• create(Path,Mode)
• ctime(Path) = DateT ime
• cwd() = Path
• dev id(Path) = Int
• directory(Path)
• directory exists(Path)
• executable(Path)
• exists(Path)
• fifo(Path)
• file(Path)
• file base name(Path) = String
• file directory name(Path) = String
• file exists(Path)
• file type(Path) = Term
• gid(Path) = Int
• ino(Path) = Int
• link(Path)
• link(Path1,Path2)
• listdir(Path) = List
• listdir(Path,REPattern) = List
• message queue(Path)
• mkdir(Path)
• mkdir(Path,Mode)
• mkdirs(Path)
• mkdirs(Path,Mode)
• mode(Path) = String
• mode(Path,V alue)
• mtime(Path) = DateT ime
• mv(Path1,Path2)
• nlink(Path) = Int
• pwd() = Path
• readable(Path)
• rm(Path)
• rmdir(Path)
• root() = Path
• semaphore(Path)
• separator() = V al
• shared memory(Path)
• shortcut(Path)
• shortcut(Path1,Path2)
• size(Path) = Int
• socket(Path)
• uid(Path) = Int
• unlink(Path)
• writable(Path)

Modules cp, sat, and mip

• X #= Y
• X #!= Y
• X #> Y
• X #>= Y
• X #< Y
• X #=< Y
• X #<= Y
• #˜X
• X #\/ Y
• X #/\ Y
• X #ˆ Y
• X #=> Y
• X #<=> Y
• V ars in Exp

• V ars notin Exp

• all different(FDV ars)
• all distinct(FDV ars)
• assignment(FDV ars1,FDV ars2)
• circuit(FDV ars)
• count(V ,FDV ars,Rel,N)
• cumulative(Starts,Durations,Resources,Limit)
• diffn(RectangleList)

• disjunctive tasks(Tasks)
• element(I,List,V)
• fd degree(FDV ar) = Degree

• fd disjoint(DV ar1,DV ar2)
• fd dom(FDV ar) = List
• fd false(FDV ar,Elm)
• fd max(FDV ar) = Max
• fd min(FDV ar) = Min
• fd min max(FDV ar,Min,Max)
• fd next(FDV ar,Elm) = NextElm
• fd prev(FDV ar,Elm) = PrevElm

• fd set false(FDV ar,Elm)
• fd size(FDV ar) = Size
• fd superset(DV ar1,DV ar2)
• fd true(FDV ar,Elm)
• fd var(Term)
• global cardinality(List,Pairs)
• indomain(V ar)
• indomain down(V ar)
• lp in(V ars,LExp,UExp)

• neqs(NeqList)

• new fd var() = FDV ar
• serialized(Starts,Durations)
• solve(Options,V ars)

• solve(V ars)
• subcircuit(FDV ars)

157

Module thread

• acquire mutex(Mutex)

• broadcast cv(CV)

• join(Thread)
• new cv() = CV

• new mutex() = Mutex

• new rwlock() = RWLock

• new semaphore() = Semaphore

• new semaphore(N) = Semaphore

• new thread(S,Arg1,. . .,Argn) = Thread

• p semaphore(Semaphore)

• rdlock(RWLock)

• release mutex(Mutex)

• rwunlock(RWLock)

• signal cv(CV)

• sleep(Milliseconds)

• start(Thread)
• this thread() = Thread

• v semaphore(Semaphore)

• wait cv(CV ,Mutex)

• wrlock(RWLock)

Module timer

• get interval(Timer) = Milliseconds

• kill(Timer)

• new timer(Milliseconds) = Timer

• set interval(Timer,Milliseconds)

• start(Timer)

• stop(Timer)

Module process

• exec(S,Arg1,. . .,Argn)
• execl(S,ArgList)
• fork() = ID

• new process(S,Arg1,. . .,Argn) = ID

• pid() = ID

• ppid() = ID

• wait() = StatMap

• waitpid(ID) = StatMap

Module socket

• accept(FD) = Client

• bind(FD,INet,Address,Port)

• bind(FD,Unix,Name)

• close(FD)

• connect(FD,INet,Address,Port)

• connect(FD,Unix,Name)

• getaddr(Name) = Addr

• getcanonicalname(Addr) = Name

• gethostbyaddr(Addr) = Host

• gethostbyname(Name) = Host

• getservbyname(Name) = Service

• getservbyname(Name,Type) = Service

• getservport(Name) = Port

• getsockopt(FD,Level,Option) = V alue

• joingroup(GroupAddress)

• leavegroup(GroupAddress)

• listen(FD)

• listen(FD,Backlog)

• recv(FD) = Message

• recv(FD,Flags) = Message

• recvfrom(FD,Domain) = Message

• recvfrom(FD,Flags,Domain) = Message

• send(FD,Message) = NBytes

• send(FD,Message,Flags) = NBytes

• sendto(FD,Message,Domain,Address,Port)
= NBytes

• sendto(FD,Message,Flags,
Domain,Address,Port) = NBytes

• sendto(FD,Message,Flags,Name) =
NBytes

• sendto(FD,Message,Name) = NBytes

• setsockopt(FD,Level,Option,V alue)

• socket(Domain,Type) = FD

• tcp bind(FD,Address,Port)

• tcp connect(FD,Address,Port)

• tcp socket() = FD

• udp bind(FD,Address,Port)

• udp socket() = FD

• unix bind(FD,Name)

• unix connect(FD,Name)

• unix socket() = FD

158

Module sys (imported by default)

• abort
• cl(File)
• compile(File)
• debug
• execute(CommandString) = Status

• exit
• getenv(EnvironmentV arNameString) =
String
• halt
• help
• initialize table
• load(File)
• modules() = List
• nodebug
• nospy Functor
• nospy
• notrace
• profile(Goal)
• profile src(File)
• prompt(NewPrompt)
• spy Functor

• statistics(Name,V alue) (nondet)
• statistics
• table get all(Goal) = List

• table get one(Goal)
• trace

Module datetime

• add days(DateT ime,Days) = DateT ime

• add hours(DateT ime,Hours) = DateT ime
• add milliseconds(DateT ime,MilliSeconds)
= DateT ime

• add minutes(DateT ime,Minutes) =
DateT ime

• add months(DateT ime,Months) = DateT ime

• add seconds(DateT ime,Seconds) =
DateT ime

• add years(DateT ime,Y ears) = DateT ime

• compare(DateT ime,DateT ime) = Res

• current datetime() = DateT ime

• day(DateT ime) = Day

• day of week(DateT ime) = Atom

• day of year(DateT ime) = Int

• day string(DateT ime) = String

• dt to fstring(Format,DateT ime) =
String

• hour(DateT ime) = Hour

• is leap year(DateT ime)

• millisecond(DateT ime) = MilliSecond

• minute(DateT ime) = Minute

• month(DateT ime) = Month

• month string(DateT ime) = String

• second(DateT ime) = Second

• set day(DateT ime,Day)

• set hour(DateT ime,Hour)

• set millisecond(DateT ime,MilliSecond)

• set minute(DateT ime,Minute)

• set month(DateT ime,Month)

• set second(DateT ime,Second)

• set year(DateT ime,Y ear)

• time string(DateT ime) = String

• year(DateT ime) = Y ear

159

Index

abort/0, 20, 159
abs/1, 129, 156
accept/1, 111, 112, 115, 116, 119, 158
acos/1, 132, 156
acosh/1, 133, 156
acquire mutex/1, 89, 158
acyclic term/1, 34, 154
add days/2, 135, 159
add hours/2, 135, 159
add milliseconds/2, 135, 159
add minutes/2, 135, 159
add months/2, 135, 159
add seconds/2, 135, 159
add years/2, 135, 159
all different/1, 106, 107, 157
all distinct/1, 107, 108, 157
any-port, 14, 80–82
append/3, 29, 37, 154
apply, 13, 34, 62, 154
arity/1, 24, 30, 154
array/1, 31, 154
asin/1, 132, 156
asinh/1, 133, 156
assignment/2, 107, 157
at end of stream/1, 65, 66, 156
atan/1, 132, 156
atan2/2, 132, 156
atanh/1, 133, 156
atime/1, 78, 157
atom/1, 26, 154
atom chars/1, 26, 154
atom codes/1, 26, 154
atomic/1, 26, 154
attr var/1, 26, 154
avg/1, 29, 154
between/3, 28, 154
bind/3, 119, 158
bind/4, 111, 112, 115, 117, 158
block special/1, 78, 157
bound-port, 14, 80, 81
broadcast cv/1, 95, 158

call, 13, 15, 34, 87, 98, 99, 154
catch, 52
cbrt/1, 131, 156
cd/1, 75, 157
ceiling/1, 130, 156
char/1, 154
char code/1, 26, 104, 154
char special/1, 78, 157
chdir/1, 75, 157
chmod/2, 75–77, 157
circuit/1, 107, 108, 157
cl/1, 20, 159
close/1, 67, 70, 113, 116, 118, 120, 156, 158
code char/1, 104, 154
compare/2, 137, 159
compare terms/2, 34, 56, 154
compile/1, 20, 159
compound/1, 28, 154
connect/3, 119, 158
connect/4, 111–113, 115, 116, 158
copy term/1, 34, 154
cos/1, 131, 156
cosh/1, 132, 156
cot/1, 132, 156
coth/1, 133, 156
count/4, 107, 157
cp/2, 76, 157
create/1, 75, 157
create/2, 75, 157
csc/1, 132, 156
csch/1, 133, 156
ctime/1, 78, 157
cumulative/4, 107, 108, 157
current datetime/0, 134, 159
cwd/0, 75, 157
day/1, 135, 159
day of week/1, 159
day of year/1, 159
day string/1, 136, 159
debug/0, 20, 159
degrees/1, 131, 156

160

delete/2, 29, 154
delete all/2, 29, 154
dev id/1, 77, 157
different terms/2, 34, 83, 154
diffn/1, 107, 157
digit/1, 154
directory/1, 75, 78, 157
directory exists/1, 78, 157
disjunctive tasks/1, 107, 157
dom-port, 14, 80–82
dt to fstring/2, 136, 151, 159
dup/1, 70, 156
dup2/2, 70, 71, 156
element/3, 108, 157
eof, 64–66, 71, 113, 156
execl/2, 99, 158
executable/1, 77, 157
execute/1, 159
exec, 71, 98, 99, 158
exists/1, 78, 157
exit/0, 19, 159
exp/1, 130, 156
e, 129, 156
fail, 4, 16, 38, 154
fd degree/1, 102, 157
fd disjoint/2, 102, 157
fd dom/1, 102, 157
fd false/2, 103, 157
fd max/1, 103, 157
fd min/1, 103, 157
fd min max/3, 103, 157
fd next/2, 103, 157
fd prev/2, 103, 157
fd set false/2, 103, 157
fd size/1, 103, 157
fd superset/2, 103, 157
fd true/2, 103, 157
fd var/1, 103, 157
fifo/1, 78, 157
file/1, 78, 157
file base name/1, 77, 157
file directory name/1, 78, 157
file exists/1, 78, 157
file type/1, 78, 157
finally, 13, 52, 53
findall, 13, 34, 62, 154
float/1, 28, 154
floor/1, 130, 156
flush/0, 33, 154

flush/1, 33, 67, 156
fork/0, 97, 98, 158
fprint/2, 33, 67, 156
fprintf, 33, 67, 150, 156
fprintln/2, 33, 67, 156
fread byte/1, 64, 156
fread byte/2, 64, 65, 156
fread char/1, 33, 64, 156
fread char/2, 33, 64, 65, 156
fread file bytes/1, 65, 156
fread file chars/1, 64, 156
fread int/1, 33, 64, 156
fread line/1, 33, 64, 66, 156
fread real/1, 33, 64, 156
fread term/1, 33, 64, 156
fread token/1, 33, 64, 156
fread unicode char/1, 33, 64, 156
fread unicode char/2, 33, 64, 65, 156
freadln/1, 33, 64, 156
freeze/2, 34, 83, 154
fwrite/2, 33, 66, 67, 156
fwrite byte/1, 156
fwrite byte/2, 33, 66
fwritef, 33, 66, 67, 150, 156
fwriteln/2, 33, 66, 156
fwrite, 67
get/2, 3, 4, 15, 24, 26, 28, 31, 154
get global map/0, 15, 34, 154
get heap map/0, 15, 34, 154
get interval/1, 85, 158
getaddr/1, 121, 158
getcanonicalname/1, 121, 158
getenv/1, 159
gethostbyaddr/1, 121, 158
gethostbyname/1, 121, 158
getpos/1, 68, 69, 156
getservbyname/1, 122, 158
getservbyname/2, 122, 158
getservport/1, 122, 158
getsockopt/3, 120, 152, 158
gid/1, 77, 157
global cardinality/2, 108, 157
ground/1, 34, 154
halt/0, 1, 19, 87, 159
has key/2, 3, 26, 31, 154
hash code/1, 35, 154
help/0, 1, 19, 159
hour/1, 135, 159
import, 10, 59, 129

161

include, 18, 59
index, 5, 40
indomain/1, 108, 157
indomain down/1, 108, 157
inf, 102, 129, 156
initialize bprolog, 126
initialize table/0, 56, 159
ino/1, 75, 77, 157
insert/3, 29, 154
insert all/3, 29, 154
ins-port, 14, 80, 81, 83
integer/1, 28, 81, 154
is leap year/1, 137, 159
join/1, 88, 158
joingroup/1, 117, 158
keys/1, 26, 31, 155
kill/1, 84, 85, 158
leavegroup/1, 117, 158
length/1, 4, 28–30, 65, 155
link/1, 78, 157
link/2, 76, 157
list/1, 29, 155
listdir/1, 75, 157
listdir/2, 75, 157
listen/1, 111, 112, 119, 158
listen/2, 112, 119, 158
load/1, 11, 20, 60, 159
log/1, 131, 156
log/2, 131, 156
log10/1, 131, 156
log2/1, 131, 156
lowercase/1, 155
lp in/3, 102, 157
map/1, 31, 155
map to list/1, 31, 155
max/1, 29, 155
max/2, 28, 41, 155
membchk/2, 29, 155
member/2, 5, 28, 29, 62, 127, 155
message queue/1, 78, 157
millisecond/1, 135, 159
min/1, 29, 155
min/2, 28, 41, 155
minute/1, 135, 159
mkdir/1, 76, 157
mkdir/2, 76, 157
mkdirs/1, 76, 157
mkdirs/2, 76, 157
mkfifo/1, 71, 72, 156

mkfifo/2, 71, 156
mkpipe/0, 71, 156
mktmp/0, 71, 156
mode/1, 77, 157
mode/2, 77, 157
modf/1, 130, 156
modules/0, 62, 159
module, 10, 18, 59
month/1, 135, 159
month string/1, 136, 159
mtime/1, 78, 157
mv/2, 76, 157
name/1, 4, 24, 30, 155
neqs/1, 108, 157
new array, 1, 155
new cv/0, 95, 158
new fd var/0, 103, 157
new list/1, 30, 155
new map/1, 1, 31, 155
new mutex/0, 89, 158
new process, 97, 98, 158
new rwlock/0, 92, 158
new semaphore/0, 91, 158
new semaphore/1, 91, 92, 158
new struct/2, 1, 31, 155
new thread, 15, 87, 158
new timer/0, 84
new timer/1, 84, 158
ninf, 129, 156
nlink/1, 77, 157
nodebug/0, 21, 159
nonvar/1, 26, 155
nospy, 159
notrace, 159
not, 24, 39, 155
nthrt/2, 131, 156
number/1, 28, 155
number chars/1, 28, 155
number codes/1, 28, 155
number vars/2, 34, 155
once, 5, 24, 36, 39, 81, 83, 155
open/1, 52, 63, 64, 66, 67, 73, 156
open/2, 63, 64, 66, 67, 73, 156
p semaphore/1, 91, 158
parse term/1, 35, 52, 155
parse term/3, 35, 155
parse term/4, 35, 155
peek byte/1, 65, 156
peek char/1, 65, 156

162

peek int/1, 65, 156
peek real/1, 65, 156
peek unicode char/1, 65, 156
picat call string, 127
picat call term, 127
picatc, 1, 18, 22
picate, 1, 18, 22
picat, 1, 18, 19
pid/0, 98, 158
pi, 6, 32, 61, 129, 131, 132, 156
post event/2, 14, 80, 81, 155
post event any/2, 81, 155
post event bound/1, 81, 155
post event dom/2, 81, 155
post event ins/1, 80, 155
pow/2, 130, 156
ppid/0, 98, 158
print/1, 33, 67, 155
printf, 33, 150, 155
println/1, 33, 87, 155
profile/1, 23, 159
profile src/1, 23, 159
prompt/1, 19, 159
put/3, 3, 15, 26, 31, 155
pwd/0, 75, 157
radians/1, 131, 156
random/0, 133, 156
random/1, 133, 156
randrange/2, 133, 156
randrange/3, 133, 156
rdlock/1, 93, 158
read char/0, 33, 155
read char/1, 33, 155
read int/0, 33, 52, 155
read line/0, 33, 70, 155
read real/0, 33, 155
read term/0, 33, 155
read token/0, 33, 155
read unicode char/0, 33, 155
read unicode char/1, 33, 155
readable/1, 77, 157
readln/0, 33, 155
real/1, 28, 155
recv/1, 111, 113, 115, 119, 158
recv/2, 113, 116, 119, 158
recvfrom/2, 115–117, 120, 158
recvfrom/3, 116, 118, 120, 158
release mutex/1, 89, 158
remove dups/1, 30, 155

repeat/0, 39, 155
reverse/1, 30, 37, 38, 155
rewind/1, 68, 69, 156
rm/1, 71, 77, 157
rmdir/1, 77, 157
root/0, 75, 157
round/1, 130, 156
rwunlock/1, 93, 158
sec/1, 132, 156
sech/1, 133, 156
second/1, 135, 159
seek/3, 68, 69, 156
select/3, 30, 155
semaphore/1, 78, 157
send/2, 111, 113, 115, 119, 158
send/3, 113, 115, 119, 158
sendto/3, 115, 119, 158
sendto/4, 119, 158
sendto/5, 115, 117, 158
sendto/6, 115, 117, 158
separator/0, 74, 157
serialized/2, 108, 157
set day/2, 136, 159
set hour/2, 136, 159
set interval/2, 85, 158
set millisecond/2, 136, 159
set minute/2, 136, 159
set month/2, 136, 159
set second/2, 136, 159
set year/2, 136, 159
setpos/2, 68, 69, 156
setsockopt/4, 117, 120, 152, 158
shared memory/1, 79, 157
shortcut/1, 78, 157
shortcut/2, 76, 157
sign/1, 129, 156
signal cv/1, 95, 96, 158
sin/1, 131, 156
sinh/1, 132, 156
size/1, 77, 157
sizeof char/0, 69, 156
sleep/1, 88, 158
socket/1, 78, 157
socket/2, 111–113, 115–117, 119, 158
solve/1, 11, 101, 102, 108, 157
solve/2, 11, 101, 102, 108, 109, 157
sort/1, 30, 155
sort down/1, 30, 155
spy/1, 21, 159

163

sqrt/1, 130, 156
start/1, 84, 87, 158
statistics/0, 159
statistics/2, 159
stderr, 69, 70, 156
stdin, 33, 69, 70, 156
stdout, 33, 69, 70, 156
stop/1, 84, 158
string/1, 30, 155
struct/1, 31, 155
subcircuit/1, 108, 157
sublist/3, 29, 30, 155
subsumes/2, 34, 155
sum/1, 30, 155
table get all/1, 58, 159
table get one/1, 58, 159
table, 9, 10, 54
tan/1, 131, 156
tanh/1, 132, 156
tcp bind/3, 112, 158
tcp connect/3, 113, 158
tcp socket/0, 112, 158
this thread/0, 15, 88, 158
throw, 5, 12, 40, 52, 155
time string/1, 136, 159
to binary string/1, 28, 155
to codes/1, 28, 155
to fstring/2, 28, 155
to hex string/1, 28, 155
to integer/1, 28, 155
to list/1, 29, 31, 155
to lowercase/1, 30, 155
to oct string/1, 28, 155
to real/1, 28, 155
to string/1, 29, 155
to uppercase/1, 30, 155
trace, 159
true, 4, 38, 43, 48, 155
truncate/1, 28, 130, 156
try, 12, 39, 52, 53
udp bind/3, 115, 117, 158
udp socket/0, 115, 117, 158
uid/1, 77, 157
unix bind/2, 119, 158
unix connect/2, 119, 158
unix socket/0, 119, 158
unlink/1, 77, 157
unnumber vars/1, 34, 155
uppercase/1, 155

v semaphore/1, 91, 92, 158
values/1, 26, 31, 155
var/1, 14, 26, 81, 83, 155
variant/2, 34, 155
vars/1, 34, 155
wait/0, 99, 158
wait cv/2, 95, 96, 158
waitpid/1, 99, 100, 158
writable/1, 77, 157
write/1, 7, 33, 42, 67, 155
write byte/1, 33, 155
writef, 33, 150, 155
writeln/1, 33, 70, 155
wrlock/1, 93, 158
year/1, 135, 159
zip, 30, 44, 155

accumulator, 41, 48, 49
action rule, i, 14, 15, 80–83, 86, 87, 106
anonymous variable, 26, 58
arity, 1, 4, 24, 30, 31, 36
array, 1, 24, 31
as-pattern, 38
assignment, i, 7, 42, 43, 48
atom, 1, 10, 13, 24, 26, 30
attributed variable, 1, 3, 14, 15, 26, 31, 32, 34,

86, 87

backtrackable rule, 4, 5, 14, 36
busy waiting, 94, 95
bytecode file, 18

call trace, 21, 22
car, 29, 32, 38
cdr, 29, 32
child process, 97–100, 118
compound value, 1, 2, 7, 24, 28, 29, 42, 44, 47
condition variable, 89, 94–96
cons, 29, 38, 41
constraint, i, 11, 101–109
critical section, 89, 91

deadlock, 88, 90, 91
debug mode, 18, 20–23
debugging, 1, 18, 21, 22
do-while loop, 7, 21, 43, 46, 47, 49

environment variable, 18–20, 22
exception, 4–6, 12, 13, 51, 52
execution trace, 21
extensional constraint, 103

164

failure-driven loop, 39, 44
fifo, 71–73, 78
file descriptor, 63–67, 69–71, 73
file descriptor table, 63, 67, 70, 98–100
file name, 19, 20, 22, 59, 60
first-fail principle, 102, 109
foreach loop, 4, 7, 9, 12, 21, 43–47, 49
free variable, 1, 6, 24, 26, 30, 31, 98, 100
function, i, 1, 2, 4, 6, 9–11, 13, 14, 36–38, 41
function fact, 6, 37, 61
functor, 30–32

global map, 15, 16, 86–88, 94
global module, 10, 59, 60
goal, 4, 13, 36, 38, 39
ground, 34

handler, 52
hard link, 76–78
heap map, 15, 16
higher-order call, 2, 11, 13, 14

if statement, 4, 5, 39, 43
imperative, i, 42
index declaration, 5, 6, 10, 40
inode, 75–77
instantiated variable, 14, 24, 29, 32, 34, 98, 100
integer, 1, 2, 24, 27, 28
internet domain, 110–112, 116
interrupt, 12, 51
ip, 111–113, 115–117, 121
iterator, 2, 7, 44, 45, 47, 49

last-call optimization, 41
linear tabling, 56
list, 1–3, 5, 8, 10, 13, 24, 26, 28–32, 34
list comprehension, 2, 3, 9, 21, 42, 47, 49
local variable, 7, 12, 42, 47, 49

map, 1, 3, 15, 24, 26, 31, 34
mode-directed tabling, 9, 10, 55
module file, 11, 18, 20
multicast, 114, 116, 117, 120
mutex, 89–92, 94–96

nested loop, 45, 49
non-backtrackable rule, 4, 6, 14, 36, 37
non-debug mode, 18, 20, 21, 23
number, 1, 24, 26–29

occurs-check problem, 32

parent process, 97–100, 111
predicate, i, 2–6, 9–11, 13, 14, 36–38, 40, 41
predicate fact, 5, 6, 40
primitive value, 1, 24, 29, 32
process, 70, 71, 73, 97–100, 111, 118–120

read-write lock, 89, 92, 93

scope, 7, 12, 42, 47
semaphore, 78, 89, 91, 92
single-assignment, 24, 42
socket, ii, 78, 110–113, 115, 117, 119–121
spy point, 21, 22
starvation, 91, 92, 94
string, 1, 24, 26, 28–30, 35
structure, 1, 2, 4, 10, 13, 24, 28–32, 51
symbol table, 60
symbolic link, 76–78

table constraint, 102, 103
tabling, i, ii, 9, 10, 16, 54–56, 58
tail recursion, 9, 37, 41, 48
tcp, 110–115, 118
term, 1–3, 5, 12–16
thread, i, ii, 14, 15, 86–97, 100

udp, 112, 114–118
unix domain, 110, 111, 113, 115, 116, 118–120
unnamed pipe, 71–73

while loop, 4, 7, 21, 43, 45, 46, 48, 49

165

	Overview
	Data Types
	Defining Predicates
	Defining Functions
	Assignments and Loops
	Tabling
	Modules
	Constraints
	Exceptions
	Higher-Order Calls
	Action Rules and Threads
	Global Maps
	External Language Interfaces and Libraries
	Resources
	Programming Exercises

	How to Use the Picat System
	How to Use the Picat Interpreter
	How to Enter and Quit the Picat Interpreter
	How to Use the Command-line Editor
	How to Compile and Load Programs
	How to Run Programs

	How to Use the Debugger
	How to Use the picate and picatc Commands
	How to Use the Profiler

	Data Types, Operators, and Built-ins
	Variables
	Atoms
	Numbers
	Compound Terms
	Equality Testing and Unification
	Expressions
	Basic I/O
	Other Built-ins on Terms

	Predicates and Functions
	Predicates
	Functions
	Patterns and Pattern-Matching
	Goals
	Predicate Facts
	Tail Recursion

	Assignments and Loops
	Assignments
	If-Else

	Types of Loops
	Foreach Loops
	Foreach Loops with Multiple Iterators
	While Loops
	Do-while Loops

	List Comprehensions
	Compilation of Loops
	List Comprehensions

	Exceptions
	Built-in Exceptions
	Throwing Exceptions
	Defining Exception Handlers

	Tabling
	Table Declarations
	The Tabling Mechanism
	Primitives on Tables

	Modules
	Module and Import Declarations
	Binding Calls to Definitions
	Accessing Attributes of Modules
	Binding Higher-Order Calls
	Library Modules

	I/O
	Opening a File
	Reading from a File
	End of File

	Writing to a File
	Flushing and Closing a File
	Repositioning I/O Pointers Within Files
	Standard File Descriptors
	Redirection
	Temporary Files and Pipes
	Temporary Files
	Pipes
	A Note on Errors

	The File System
	The Path Parameter
	Directories
	The Current Working Directory

	Modifying Files and Directories
	Creation
	Modification
	Deletion

	Obtaining Information about Files

	Event-Driven Actors and Action Rules
	Channels, Ports, and Events
	Action Rules
	Lazy Evaluation
	Constraint Propagators
	Timers and Time Events

	Threads
	Starting and Terminating Threads
	Making Threads Wait
	Deadlock

	Mutual Exclusion
	Mutex Locks
	Semaphores

	Read-Write Locks
	Condition Variables

	Processes
	Creating New Processes
	Executing Other Code
	Making Processes Wait
	Differences Between Processes and Threads

	Constraints
	Domain Variables
	Table constraints
	Arithmetic Constraints
	Boolean Constraints
	Global Constraints
	Solver Invocation
	Common Solving Options
	Solving Options for cp

	Sockets
	Connection-Oriented Communication
	Connectionless Communication
	Multicasting
	Communication on the Unix Domain
	Other Socket Functions and Predicates
	Socket Options
	Host Information
	Services

	External Language Interface with C
	Calling C from Picat
	Term Representation
	Fetching Arguments of Picat Calls
	Testing Picat Terms
	Converting Picat Terms into C
	Manipulating and Writing Picat Terms
	Building Picat Terms
	Registering Predicates that were Defined in C

	Calling Picat from C

	Appendix: Math
	Constants
	Functions
	Sign and Absolute Value
	Rounding and Truncation
	Exponents, Roots, and Logarithms
	Converting Between Degrees and Radians
	Trigonometric Functions
	Hyperbolic Functions
	Random Numbers

	Appendix: Date and Time
	Representing Date and Time
	Extracting Values
	Changing the Date and Time
	Adding
	Setting

	Converting to Strings
	Other Built-ins

	Appendix: Lexical Grammar
	Appendix: Syntax Grammar
	Appendix: Formats
	Formatted Printing
	Formatted Date and Time

	Appendix: Socket Options
	Appendix: The Library Modules

