
� 1

Learning Programming in Picat by
Examples from Google Code Jam

Neng-Fa Zhou
February, 2016

Abstract

Picat (picat-lang.org) is a logic-based multi-paradigm programming language that in-
tegrates logic programming, functional programming, constraint programming, dy-
namic programming with tabling, and scripting. Picat is underpinned by the same
logic programming concepts as Prolog, but it is more efficient, reliable, and conve-
nient than Prolog. Picat integrates features from other languages, including arrays,
maps, functions, list and array comprehensions, loops, and assignments. Picat’s sup-
port for explicit unification, explicit non-determinism, tabling, and constraints makes
Picat more suitable than functional languages (such as Haskell and F#) and scripting
languages (such as Python and Ruby) for symbolic computations. Picat can give a
competitive edge for many applications. This article provides a quick introduction to
Picat using examples from Google Code Jam (GCJ).

1.1 Introduction
Picat is a simple and yet powerful logic-based multi-paradigm programming lan-
guage for general-purpose applications. Picat’s core is underpinned by logic pro-
gramming concepts, including logic variables, unification, and backtracking. Logic
variables, like variables in mathematics, are value holders. A logic variable can be
bound to any term, including another logic variable. Figure 1.1 gives the types of
terms in Picat. Picat is a dynamically-typed language, which means that type check-
ing occurs at runtime.

A variable name is an identifier that begins with a capital letter or the underscore;
for example, X1 and abc are variable names. The underscore itself is used for
anonymous variables, and each occurrence of the underscore indicates a different
variable.

An atomic value can be an atom or a number. An atom is a constant symbol. An
atom name can be either unquoted or quoted. An unquoted name is an identifier that
begins with a lower-case letter, followed by an optional string of letters, digits, and
underscores. A quoted atom is a single-quoted sequence of arbitrary characters. For
example, x1, x 1, ’ abc’, and ’a+b’ are atom names.

A compound value can be a list or a structure; for example, [a,b,c] is a list and

2 �

f(a,b,c) is a structure.1 Lists are singly-linked lists. A string is a list of characters;
for example, "a+b" is the same as [a,’+’,b]. An array is a special structure; for
example, {a,b,c} is an array. A map is a special structure that contains a set of
key-value pairs, and a set is a special map that contains only keys; both are hash
tables.

Each type provides a set of built-in functions and predicates. Each of the type
names in Figure 1.1, except term and set, is a type-checking predicate. For example,
list(L) tests if L is a list. Let L be a compound term. The index notation L[I] is
a special function that returns the Ith component of list L, with L[1] referring to the
first element of L. An index notation can take multiple subscripts. The cons operator
[H|T] builds a new list by adding H to the front of T . The concatenation operator
L1 ++ L2 returns the concatenated list of L1 and L2.

In Picat, predicates and functions are defined with pattern-matching rules. Picat
has two types of rules: the non-backtrackable rule Head,Cond => Body, and the
backtrackable rule Head,Cond ?=> Body. In a predicate definition, the Head takes
the form p(t1, . . . , tn), where p is a predicate name, and n is the arity. The condition
Cond, which is an optional goal, specifies a condition under which the rule is ap-
plicable. For a call C, if C matches Head and Cond succeeds, then the rule is said
to be applicable to C. When applying a rule to call C, Picat rewrites C into Body.
If the used rule is non-backtrackable, then the rewriting is a commitment, and the
program can never backtrack to C. However, if the used rule is backtrackable, then
the program will backtrack to C once Body fails, meaning that Body will be rewritten
back to C, and the next applicable rule will be tried on C. In a function definition, the
Head takes the form f (t1, . . . , tn) = Term, where f is a function name and Term is a
result to be returned.

Picat supports tabling for dynamic programming solutions. Both predicates and
functions can be tabled. In order to have all calls and answers of a predicate or
function tabled, you just need to add the keyword table before the first rule. For
a predicate definition, the keyword table can be followed by a tuple of table modes,

1A structure requires a proceding dollar symbol, as in $f(a,b,c), to distinguish the structure from a
function call, unless the structure is special, or it occurs in a special context.

Figure 1.1: Picat’s data types

� 3

including + (input), - (output), min, max, and nt (not tabled). For a predicate with a
table mode declaration that contains min or max, Picat tables one optimal answer for
each tuple of the input arguments.

Picat supports loops for describing repetitions, and comprehensions for con-
structing lists and arrays using properties. Other features of Picat include assign-
ments, global maps for storing permanent data, higher-order functions, action rules
for defining event-driven actors, and modules for modeling and solving constraint
satisfaction problems with CP, SAT, and MIP.

This article gives programs in Picat for several Google Code Jam (GCJ) prac-
tice problems. The objective is to familiarize you with Picat’s language features and
well-used built-ins. More details of the Picat language can be found in the User’s
Guide.2 The constraint programming and planning modules are detailed in the book
“Constraint Solving and Planning with Picat” by N.-F. Zhou, H. Kjellerstrand, and J.
Fruhman, Springer, 2015; in the book, Agostino Dovier gives a short account of the
history of logic programming that led to the design of Picat. Solutions in Picat for
several GCJ problems that utilize tabling and constraints can be found in “Declar-
atively Solving Google Code Jam Problems with Picat” by S. Dymchenko and M.
Mykhailova in PADL’15. Many more programs for GCJ problems can be found at:

http://picat-lang.org/gcj/index.html

You need to download the Picat system from picat-lang.org and install it. Binary
executables are available for most popular platforms, including Windows, Linux, and
MacOS. The C-source code is also available, so executables can be made for other
platforms. All of the programs given in this article contain a main predicate, and can
be run from a command line. Let prog.pi be a Picat program and practice.in be
an input file. You can run the program on the input using the following command:

picat prog < practice.in > practice.out

The output is stored in a file named practice.out.

1.2 Reverse Words
Reverse Words is an easy practice problem.3 Given a list of space separated words,
reverse the order of the words.

i m p o r t u t i l .

main =>
T = r e a d l i n e () . t o i n t () ,
f o r e a c h (TC i n 1 . . T)

Words = r e a d l i n e () . s p l i t () ,
p r i n t f (” Case #%w: %s\n ” , TC , Words . r e v e r s e () . j o i n ())

end .

2A User’s Guide to Picat by N.-F. Zhou and J. Fruhman (http://picat-lang.org)
3https://code.google.com/codejam/contest/351101/dashboard#s=p1

4 �

import util.

main =>

T = read_line().to_int(),

foreach (TC in 1..T)

Words = read_line().split(),

printf("Case #%w: %s\n", TC, Words.reverse().join())

end.

This program imports the util module, from which the functions split and join

are used. Several modules, including basic, math, io, and sys, are preloaded once
the Picat system is started, and built-ins defined in these modules can be used without
import.

The main predicate is defined by one rule. The first line in the body of main
reads T, the number of test cases, from the standard input stdin. The function
read line(), which is defined in the io module, reads the next line from stdin,
and returns it as a string. The function to int() converts the string into an integer.
In Picat, the dot (.) operator can be utilized to chain function calls. The chain of calls
read line().to int() is the same as to int(read line()).

The foreach loop iterates over the test case numbers in the range 1..T. For each
number, TC, the loop reads a line of words and prints out a line of the same words
in reversed order. The range 1..T is the same as the list [1,2,...,T]. The Picat
compiler translates the loop into tail recursion such that the list is not actually con-
structed.

A foreach loop statement has the following general format:

foreach (E1 in D1, Cond1, . . ., En in Dn, Condn)

Goal
end

where each Ei in Di is an iterator (Ei is an iterating pattern and Di is an expression
that gives a compound value), and each Condi is an optional condition on the patterns
E1 through Ei. The foreach loop executes Goal once for every possible combination
of values in the iterators that satisfies the conditions.

Each loop statement forms a name scope. Variables that occur only in a loop, but
do not occur before the loop in the outer scope, are local to each iteration of the loop.
In the above example, the variable Words is local to the loop, meaning that for each
TC there is a list of words Words.

The split(String) function takes a string and splits it into a list of tokens, us-
ing white spaces as split characters. For example, the call split("Hello Picat

World") returns ["Hello", "Picat", "World"]. The reverse(List) function
takes a list and returns a reversed list. The join(Tokens) function concatenates
Tokens into a string, adding a white space between each two tokens. For exam-
ple, the call join(["Hello", "Picat", "World"]) returns the string "Hello

Picat World".

� 5

The built-in predicate printf, which performs formatted printing, is similar to
the printf function in the C language. The format specifier %s is for printing strings,
and the specifier %w is for printing a term of any type.

Assume that the program is stored in a file named reverse words.pi, and that
the file reverse words.in contains the following sample input:

3

this is a test

foobar

all your base

The command

picat reverse_words < reverse_words.in

produces the following required output:

Case #1: test a is this

Case #2: foobar

Case #3: base your all

1.3 Store Credit
Store Credit is another easy practice problem.4 A test case consists of an integer C,
which is the store credit you receive, and a sequence of integers, which are prices of
the available items. The output for a test case consists of the indices, i and j (i < j),
of the two items whose prices add up to the store credit. It is assumed that each test
case will have exactly one solution.

main =>

T = read_int(),

foreach (TC in 1..T)

C = read_int(),

N = read_int(),

Items = {read_int() : _ in 1..N},

do_case(TC, C, Items)

end.

do_case(TC, C, Items),

between(1, len(Items)-1, I),

between(I+1, len(Items), J),

C == Items[I]+Items[J]

=>

printf("Case #%w: %w %w\n", TC, I, J).

4https://code.google.com/codejam/contest/351101/dashboard#s=p0

6 �

The function read int() reads an integer from the standard input stdin. The
main predicate reads T, the number of test cases. For each test case number
TC, the foreach loop reads the store credit C, the number of available items N,
and the sequence of prices of the items Items. For each test case, the predicate
do case searches for two indices, I and J (I < J), that satisfies the condition C ==

Items[I]+Items[J], and prints out the answer.
The expression {read int() : in 1..N} is called an array comprehension,

which returns an array consisting of N integers read from stdin. An array compre-
hension has the following general format:

{Exp : E1 in D1, Cond1, . . ., En in Dn, Condn}
where Exp is an expression, and the iterators and conditions have the same format
as those used in the foreach loop. An array comprehension is a special functional
notation for creating arrays. It includes Exp as an element in the array for each pos-
sible combination of values in the iterators that satisfies the conditions. Like a loop,
an array comprehension also forms a name scope.

The array comprehension {read int() : in 1..N} is equivalent to
[read int() : in 1..N].to array(), which creates a list using a list com-
prehension, and converts the list to an array. Since the array comprehension creates
a temporary list, the following code is more efficient:

Items = new_array(N),

foreach (I in 1..N)

Items[I] = read_int()

end,

The function new array(N) returns a new array of N elements. Initially, all the ele-
ments are distinct variables. The foreach loop fills in the array with integers from
the input.

In Picat, the function len(L) returns the length of L, and the index operator L[I]
returns the Ith element of L. While len(L) and L[I] take constant time when L is
an array, they take linear time when L is a list. For this reason the program uses an
array, rather than a list, to store the prices.

The do case predicate uses a failure-driven loop to enumerate I, over the range
1..len(Items)-1, and J, over the range I+1..len(Items), until a pair of in-
dices is found that satisfies the condition C == Items[I]+Items[J]. This pred-
icate implements a basic search technique, called generate-and-test. The predicate
call between(From,To,X) is a choice point, which nondeterministically selects a
value from the range From..To for X . It first binds X to From. When execution back-
tracks to the call, it binds X to From+1 if From+1 is not greater than To. Execution
can backtrack to the call as long as there are untried values in the range. The call fails
when execution backtracks to it, and all values have been tried. When this calls fails,
execution will continue to backtrack to another call that is a choice point.

The operator == tests if two terms are identical, and the operator = performs
unification on two terms. The unification T1 = T2 is true if term T1 and term T2 can
be made identical by binding some of the variables to values.

� 7

The do case predicate can be implemented as follows using a foreach loop:

do_case(TC, C, Items) =>

foreach(I in 1..len(Items)-1, J in I+1..len(Items))

if (C == Items[I]+Items[J]) then

printf("Case #%w: %w %w\n", TC, I, J)

end

end.

Nevertheless, this implementation is not as preferable as the failure-driven loop, be-
cause the foreach loop continues to check all the remaining pairs, even after a sat-
isfying pair has been found. Picat does not provide statements like the break or
return statements in procedural languages that can terminate loops early.

In this example, all three occurrences of %w in printf can be safely replaced
by %d, because the integers all fit in 32 bits. However, for printing big integers, the
specifier %w must be used.

The above program takes O(n2) time, where n is the number of items. It can
be improved by using a map to speed up search. The following gives an improved
version:

main =>

T = read_int(),

foreach (TC in 1..T)

C = read_int(),

N = read_int(),

Items = {read_int() : _ in 1..N},

Map = new_map(),

foreach (I in N..-1..1)

Is = Map.get(Items[I], []),

Map.put(Items[I],[I|Is])

end,

do_case(TC, C, Items, Map)

end.

do_case(TC, C, Items, Map),

between(1, len(Items)-1, I),

Js = Map.get(C-Items[I], []),

member(J, Js),

I < J

=>

printf("Case #%w: %w %w\n", TC, I, J).

The function new map() returns a new map. The function put(Map, Key, Value)
puts the pair (Key, Value) into Map. The function get(Map, Key, De f aultVal)
returns the value associated with Key in Map; it returns De f aultVal if Map does not
contain Key.

The foreach loop below new map() inserts a key-value pair for each price into

8 �

the map, where the key is the price, and the value is a list of indices at which the
price occurs in the array. Note that the loop iterates over the indices from N down to
1. The indices associated with each price are added to the front of the list, from the
largest to the smallest. In this way, the resulting list of indices for each price will be
sorted in ascending order.

The do case predicate does the following: For each I in 1..len(Items)-1, and
for each J in Js (which is the list of indices associated with the value C-Items[I]),
if I < J, then (I, J) is a satisfying pair of indices. The call member(J, Js) nonde-
terministically selects a value from Js for J.

1.4 Minimum Scalar Product
This problem is from Round 1A 2008.5 Given two vectors v1 = (x1,x2, . . . ,xn) and
v2 = (y1,y2, . . . ,yn), the problem is to choose a permutation of v1 and a permutation
of v2 such that the scalar product of these two permutations is the smallest possible,
and output that minimum scalar product.

Like many other GCJ problems, this problem requires insightful reasoning. The
brute-force approach that enumerates all of the permutations cannot be scaled to
handle large vectors. Let v1 = (x1,x2) and v2 = (y1,y2). Assume x1 ≤ x2 and y1 ≤ y2.
It is not difficult to prove that

x1× y2 + x2× y1 ≤ x1× y1 + x2× y2.

In general, in order to get the minimum product, we can sort v1 in ascending order
and sort v2 is descending order, and multiply the sorted vectors.

main =>

T = read_int(),

foreach (I in 1..T)

do_case(I)

end.

do_case(TC) =>

N = read_int(),

V1 = [read_int() : _ in 1..N].sort(),

V2 = [read_int() : _ in 1..N].sort_down(),

Prod = sum([E1*E2 : {E1,E2} in zip(V1,V2)]),

printf("Case #%w: %w%n", TC, Prod).

The sort(L) function returns a sorted list of L in ascending order, and the
sort down(L) function returns a sorted list of L is descending order. These sort
functions can be utilized to sort a list of any terms. The expression

5https://code.google.com/codejam/contest/32016/dashboard#s=p0

� 9

sum([E1*E2 : {E1,E2} in zip(V1,V2)])

gives the product of the two vectors V1 and V2. The function zip(V1,V2) returns
a zipped list of pairs from V1 and V2. For example, zip([1,2],[3,4]) returns
[{1,3},{2,4}]. This expression sums E1*E2 for each pair {E1,E2} in the zipped
list of V1 and V2. For this expression, the Picat compiler generates code for evaluating
the expression without actually creating a zipped list or a list for the list comprehen-
sion.

Let’s see how to implement the brute-force algorithm for the problem. We don’t
need to try all permutations of both vectors. We can fix v1 and choose a permutation
of v2 such that the product of v1 and the permutation is minimum. This brute-force
algorithm is not efficient, but it can handle the small test.

import util.

main =>

T = read_int(),

foreach (I in 1..T)

do_case(I)

end.

do_case(Case) =>

N = read_int(),

V1 = [read_int() : _ in 1..N],

V2 = [read_int() : _ in 1..N],

minof(scalar_prod(V1,V2,Prod),Prod),

printf("Case #%w: %w%n", Case, Prod).

scalar_prod(V1,V2,Prod) =>

permutation(V2,V22),

Prod = sum([E1*E2 : {E1,E2} in zip(V1,V22)]).

The predicate permutation(V2,V22), which is defined in the util mod-
ule, nondeterministically binds V22 to a permutation of V2. For a permuta-
tion V22 of V2, the predicate scalar prod(V1,V2,Prod) binds Prod to the
product of V1 and V22. Since the permutation predicate is nondeterminis-
tic, the scalar prod predicate is also nondeterministic. The built-in predicate
minof(scalar prod(V1,V2,Prod),Prod) returns an instance of the predicate
call scalar prod(V1,V2,Prod) that has the smallest Prod.6

It is also possible to iterate over all of the permutations to find the best permu-
tation that gives the minimum product.7 Nevertheless, the backtracking-based ap-

6The minof predicate, which takes another predicate call as the first argument, is called a
higher-order predicate. Picat provides several higher-order built-ins. For example, maxof(Goal,Exp),
find all(Template,Goal), and count all(Goal).

7The function permutations(L), which is defined in the util module, returns a list of permutations
of L.

10 �

proach is more memory efficient than the iterative approach, since it does not use
any memory to store all the permutations.

The following shows how the permutation predicate is implemented in Picat:

permutation([], P) => P = [].

permutation(L, P) =>

P = [X|P1],

select(X, L, L1),

permutation(L1, P1).

select(X, [Y|L], L1) ?=> Y = X, L1 = L.

select(X, [Y|L], L1) => L1 = [Y|L2], select(X, L, L2).

This implementation utilizes pattern-matching rules, where the heads contain non-
variable patterns. The first rule states that the permutation of [] is []. For a non-
empty list L, the second rule is applied. The call P = [X|P1] binds P to the list
constructed by the cons operator [X|P1]. The call select(X, L, L1) nondeter-
ministically selects an element X from L, resulting in a new list L1. The last call
permutation(L1, P1) generates a permutation P1 of L1.

The implementation of select uses a backtrackable rule, as denoted by the op-
erator ?=>. Because of the use of this backtrackable rule, this predicate becomes
nondeterministic, and it is able to return multiple answers. For example:

Picat> select(X,[1,2,3],L1)

X = 1

L1 = [2,3] ?;

X = 2

L1 = [1,3] ?;

X = 3

L1 = [1,2] ?;

no

After Picat returns an answer, you can type a semicolon immediately after the answer
to let the system backtrack; the system reports no if no answer remains.

1.5 Alien Numbers
This is Problem A in the set of practice problems.8 The objective of the problem
is to convert a number from one alien numeral system, called the source language,
to another alien numeral system, called the target language. Each numeral system
consists of a set of “digits”, and the size of the set is the base.

For a number in the source language, the conversion can be done in two steps:
first convert the number to a decimal number, and then convert the decimal number
to the target language. For each language, we use a map in order to map the digits to
their values, the first digit to 0, the second digit to 1, and so on.

8https://code.google.com/codejam/contest/32003/dashboard#s=p0

� 11

import util. % use split

main =>

T = to_int(read_line()),

foreach (TC in 1..T)

[Num,SDs,TDs] = read_line().split(),

do_case(TC, Num, SDs, TDs)

end.

do_case(TC, Num, SDs, TDs) =>

SMap = new_map(),

SBase = len(SDs),

foreach ({D, DVal} in zip(SDs, 0..SBase-1))

SMap.put(D,DVal)

end,

source_to_decimal(Num, SBase, SMap, 0, SVal),

%

TMap = new_map(),

TBase = len(TDs),

foreach ({D, DVal} in zip(TDs, 0..TBase-1))

TMap.put(DVal,D)

end,

decimal_to_target(SVal, TBase, TMap, TNum),

printf("Case #%w: %s\n", TC, TNum).

source_to_decimal([], _Base, _Map, Val0, Val) => Val = Val0.

source_to_decimal([D|Ds], Base, Map, Val0, Val) =>

source_to_decimal(Ds, Base, Map, Val0*Base+Map.get(D), Val).

decimal_to_target(0, _Base, Map, Num) => Num = [Map.get(0)].

decimal_to_target(Val, Base, Map, Num) =>

Ds = [],

while (Val !== 0)

DVal := Val mod Base,

Val := Val div Base,

Ds := [Map.get(DVal)|Ds]

end,

Num = Ds.

Each test case consists of a number string Num, a list of digits SDs in the source
language, and a list of digits TDs in the target language. For the source language, the
program uses SMap to map the digits to the values, and stores the base in SBase.

Let [Dn−1,Dn−2, . . . ,D1,D0] be a number string of the source language that has
the base B. This string represents the decimal value: Dn−1 ∗Bn−1 +Dn−2 ∗Bn−2 +
. . .+D1 ∗B1 +D0. The predicate source to decimal(Num, Base, Map, Val0,

Val) uses tail recursion to convert the number string Num into decimal: If Num is
empty, then the result Val is bound to the accumulator Val0; otherwise, if Num is
a list [D|Ds], then it recurses on Ds using Val0*Base+Map.get(D) as the new

12 �

accumulator value. The accumulator value in the initial call to source to decimal

is 0.
Let Dn−1∗Bn−1+Dn−2∗Bn−2+ . . .+D1∗B1+D0 be the decimal value and B be

the base of the target language. The digits can be extracted using the divide-by-base
algorithm. When the value is divided by the base B, the remainder is D0, and the quo-
tient is Dn−1 ∗Bn−2+Dn−2 ∗Bn−3+ . . .+D1. This division step is repeatedly applied
to the value until the value becomes 0. The predicate decimal to target(Val,

Base, Map, Num) converts the decimal value Val to a number string of the target
language. If Val is 0, then the string only consists of the 0-value digit. Otherwise,
the predicate uses the divide-by-base algorithm to extract the digits.

The predicate decimal to target illustrates the use of the while loop and the
assignment operator := in Picat. A while loop takes the form

while (Cond)
Goal

end

It repeatedly executes Goal as long as Cond succeeds. For the assignment X :=

Exp, Picat introduces a new variable to hold the value of Exp; after that, this new
variable replaces all of the occurrences of X in the scope. Because of variable cloning,
no values can be returned using assignments. For example, if the unification Num =

Ds in the decimal to target predicate were changed to Num := Ds, then the result
would never be returned to the caller through the variable Num.

1.6 Alien Language
Alien Language involves matching words in an alien language against patterns.9 A
pattern consists of tokens, where each token is either a single lowercase letter or a
group of unique lowercase letters surrounded by parentheses (and). For example:
(ab)d(dc) means the first letter is either a or b, the second letter is definitely d, and
the last letter is either d or c. Therefore, the pattern (ab)d(dc) can stand for any one
of these 4 possibilities: add, adc, bdd, bdc. Each test case is a pattern. The output
for the case indicates how many of the given words match the pattern.

The problem can be solved by pattern matching. For a letter in a word, if the token
is also a letter, then the match succeeds iff the two letters are identical; otherwise, if
the token is a group, then the match succeeds iff the letter is included in the group.

import util.

main =>

[_L,D,T] = [to_int(W) : W in read_line().split()],

Words = [read_line() : _ in 1..D],

foreach(TC in 1..T)

9https://code.google.com/codejam/contest/90101/dashboard#s=p0&a=1

� 13

do_case(TC, Words)

end.

do_case(TC, Words) =>

trans_pattern(read_line(), P),

printf("Case #%w: %w%n", TC,

sum([1 : Word in Words, match(Word, P)])).

trans_pattern([], P) => P = [].

trans_pattern([’(’|S], P) =>

P = [G|PR],

trans_pattern_group(S, SR, G),

trans_pattern(SR, PR).

trans_pattern([X|S], P) =>

P = [X|PR],

trans_pattern(S, PR).

trans_pattern_group([’)’|S], SR, G) =>

G = [], S = SR.

trans_pattern_group([X|S], SR, G) =>

G = [X|GR],

trans_pattern_group(S, SR, GR).

match([], []) => true.

match([A|As], [A|Ps]) =>

match(As, Ps).

match([A|As], [L|Ps]), member(A,L) =>

match(As, Ps).

The first line in the body of the main predicate reads three integers from the in-
put: the length of each of the words L, the number of words D, and the number of
test cases T. The value L is not used later in the program.10 The list comprehen-
sion [read line() : in 1..D] reads D lines into a list. For each test case, the
do case predicate reads the pattern, transforms the pattern into a list, and counts the
words that match the pattern.

The predicate trans pattern(S, P) transforms the pattern string S into a
list P. A letter is copied into the list. For a group that is surrounded by parenthe-
ses, the call trans pattern group(S, SR, G) extracts the letters from the group
and puts them into the list G; SR holds the remainder of S after the extraction.
For example, for the pattern "(ab)d(dc)", the list obtained after transformation is
[[a,b],d,[d,c]]. The matching of a word against a pattern is done by the match
predicate.

Since a group is represented as a list, it takes O(n) time to check if a letter is in a
group of size n. The above program can be improved by using a set for each group.

10Picat does not issue singleton variable warnings for variable names that begin with the underscore .

14 �

trans_pattern([], P) => P = [].

trans_pattern([’(’|S], P) =>

P = [G|PR],

G = new_set(),

trans_pattern_group(S, SR, G),

trans_pattern(SR, PR).

trans_pattern([X|S], P) =>

P = [X|PR],

trans_pattern(S, PR).

trans_pattern_group([’)’|S], SR, _G) => S = SR.

trans_pattern_group([X|S], SR, G) =>

G.put(X),

trans_pattern_group(S, SR, G).

match([], []) => true.

match([A|As], [P|Ps]), atom(P) =>

A == P,

match(As, Ps).

match([A|As], [G|Ps]), G.has_key(A) =>

match(As, Ps).

The call new set() returns a new empty set. For each pattern group that begins with
’(’, the call trans pattern group(S, SR, G) adds every letter X in the group
into set G using the function G.put(X). The match predicate uses G.has key(A) to
test if letter A is in group G.

1.7 Egg Drop
Egg Drop is an optimization problem that involves three parameters: the number of
floors F in a building, the number of drops D that you are allowed to perform, and
the number of eggs B that you can break.11 You are assumed to have at least D eggs.
All eggs are identical in terms of the shell’s strength. If an egg breaks when dropped
from floor i, then all eggs are guaranteed to break when dropped from any floor
j ≥ i. Likewise, if an egg doesn’t break when dropped from floor i, then all eggs are
guaranteed to never break when dropped from any floor j ≤ i. For each floor in the
building, you want to know whether or not an egg dropped from that floor will break.

The problem can be posted in three different ways, depending on which parame-
ter is to be optimized. The first variant is to determine the maximum number of floors
that can be examined when D and B are given. If D = 0 or B = 0, then no floors can
be examined, so F = 0. If B = 1, then what you can do is to try the floors, starting
at floor 1, until the egg breaks or you have dropped D times; so F = D. In general,
let f (D,B) be the number of floors that can be examined with D drops and B breaks.

11https://code.google.com/codejam/contest/32003/dashboard#s=p2

� 15

There are two possible outcomes when dropping an egg from floor k, an optimal
floor number to start. If the egg breaks, then the k− 1 floors that are below floor k
need to be examined, and the number of remaining breaks becomes B−1. If the egg
does not break, then the floors above floor k need to be examined, and the number of
remaining breaks remains to be B. The function can be defined recursively as:

f(0, _) = 0.

f(_, 0) = 0.

f(D, B) = f(D-1, B) + f(D-1, B-1) + 1.

This function grows exponentially, and dynamic programming can be used to speed
up the computation. Since the problem requires outputting -1 if the value is greater
than or equal to 232 for given B and D, calls with large arguments are guaranteed to
return -1, and therefore do not need to be tabled.

The second variant of the problem is to find the minimum number of drops D
given F and B, and the third variant is to find the minimum number of breaks B given
F and D. These variants can also be solved using dynamic programming. However,
since the input values can be as large as 2 billion, the dynamic programming approach
is not feasible. A more efficient approach is to use binary search to find the smallest
value for which the F floors can be examined.

main =>

T = read_int(),

foreach (TC in 1..T)

F = read_int(), D = read_int(), B = read_int(),

do_case(TC, F, D, B)

end.

do_case(TC, F, D, B) =>

MF = max_f(D, B),

min_d(F, MD, B),

min_b(F, D, MB),

printf("Case #%w: %w %w %w\n", TC, MF, MD, MB).

% maximize F for given D and B

max_f(D, B) = F, D >= 100000, B >= 2 => F = -1.

max_f(D, B) = F, D >= 10000, B >= 3 => F = -1.

max_f(D, B) = F, D >= 1000, B >= 4 => F = -1.

max_f(D, B) = F, B > D => F = max_f(D, D).

max_f(D, B) = f(D, B).

table

f(_, 0) = 0.

f(D, 1) = D.

f(0, _) = 0.

f(1, _) = 1.

f(D, B) = F =>

F1 = f(D-1,B),

16 �

F2 = f(D-1,B-1),

if F1 == -1 ; F2 == -1 then

F = -1

else

F0 = F1+F2+1,

F = cond(F0 >= 2**32, -1, F0)

end.

% minimize D for given F and B

min_d(F, D, B) =>

bsearch_d(0, F, F, D, B).

bsearch_d(From, To, F, D, B), From >= To =>

D = cond((max_f(From, B) >= F ; max_f(From, B) == -1), From, From+1).

bsearch_d(From, To, F, D, B) =>

Mid = (From+To) div 2,

if max_f(Mid, B) == F then

D = Mid

elseif max_f(Mid, B) == -1 ; max_f(Mid, B) > F then

bsearch_d(From, Mid-1, F, D, B)

else

bsearch_d(Mid+1, To, F, D, B)

end.

% minimize B for given F and D

min_b(F, D, B) =>

bsearch_b(0, F, F, D, B).

bsearch_b(From, To, F, D, B), From >= To =>

B = cond((max_f(D, From) >= F ; max_f(D, From) == -1), From, From+1).

bsearch_b(From, To, F, D, B) =>

Mid = (From+To) div 2,

if max_f(D, Mid) == F then

B = Mid

elseif max_f(D, Mid) == -1 ; max_f(D, Mid) > F then

bsearch_b(From, Mid-1, F, D, B)

else

bsearch_b(Mid+1, To, F, D, B)

end.

The function max f(D, B) returns the maximum number of floors that can be ex-
amined with D drops and B breaks. It returns -1 for certain combinations of values of
D and B, where f(D, B) ≥ 232. It is necessary to filter out these cases because the
function f(D, B) takes O(D×B) table space.

In the implementation of function f(D, B), the values from f(D-1, B) and
f(D-1, B-1) are combined in such a way that -1 is returned if either value is -1 or
if f(D-1, B) + f(D-1, B-1) + 1 is greater than or equal to 232.

The min d(F, D, B) and min b(F, D, B) predicates implement binary

� 17

Figure 1.2: A maze

search for finding the minimum D and the minimum B, respectively. In Picat, (A;B)
is a disjunction, (A,B) is a conjunction, and cond(C, A, B) is a conditional ex-
pression, which gives the value of A if C if true and the value of B if C is false. Since
’;’ has lower precedence than ’,’, C must be parenthesized if it is a disjunction.

1.8 Always Turn Left
This is Problem B in the set of practice problems.12 Unlike a typical maze problem,
where the objective is to find a path from the entrance to the exit in a given maze, the
objective of this problem is to figure out the configuration of the maze for two given
“always-turn-left” paths: one path is from the entrance to the exit, and the other is
from the exit to the entrance. It is known that the maze is “perfect”, meaning that it
can always be solved using the “always turn left” algorithm. It is also known that the
maze is a rectangular grid of rooms and the entrance is on the north wall. However,
the size of the grid, the column number of the entrance, and the position of the exit
are unknown. Your program has to compute these pieces of missing information, in
addition to each room’s configuration.

A given path is described with three characters: ’W’ means to walk forward
into the next room, ’L’ means to turn left (or counterclockwise) 90 degrees, and
’R’ means to turn right (or clockwise) 90 degrees. Initially, you are assumed to
face south, since the entrance is on the north wall. For example, for the two paths:
"WRWWLWWLWWLWLWRRWRWWWRWWRWLW" and "WWRRWLWLWWLWWLWWRWWRWWLW", the
maze will have the configuration shown in Figure 1.2.

We can solve the problem by walking along the paths and recording the config-
urations of the visited rooms. The size of the maze is unknown, so we need to use
a size that is big enough for the tests. The column number of the entrance is also
unknown, so we need to guess it.

import util.

12https://code.google.com/codejam/contest/32003/dashboard#s=p1

18 �

main =>

T = to_int(read_line()),

foreach (TC in 1..T)

[FPath,BPath] = read_line().split(),

once do_case(TC, FPath, BPath)

end.

do_case(TC, [_|FPath], [_|BPath]) =>

Maze = new_array(100,100),

between(1, 100, C),

record_room(Maze[1,C], north),

walk(Maze, 1, C, EndR, EndC, south, Dir, FPath), % begin at <1,C>

walk(Maze, EndR, EndC, 1, C, opp(Dir), _, BPath), % walk back

printf("Case #%w:\n", TC),

output(Maze).

walk(Maze, R, C, EndR, EndC, Dir0, Dir, [_]) => % the last walk

record_room(Maze[R,C], Dir0),

EndR = R, EndC = C, Dir = Dir0.

walk(Maze, R, C, EndR, EndC, Dir0, Dir, [’W’|Path]) =>

Dir1 = opp(Dir0),

next_pos(R, C, Dir0, R1, C1),

record_room(Maze[R,C], Dir0),

record_room(Maze[R1,C1], Dir1),

walk(Maze, R1, C1, EndR, EndC, Dir0, Dir, Path).

walk(Maze, R, C, EndR, EndC, Dir0, Dir, [’L’|Path]) =>

Dir1 = left(Dir0),

walk(Maze, R, C, EndR, EndC, Dir1, Dir, Path).

walk(Maze, R, C, EndR, EndC, Dir0, Dir, [_|Path]) => % turn right

Dir1 = right(Dir0),

walk(Maze, R, C, EndR, EndC, Dir1, Dir, Path).

left(north) = west.

left(south) = east.

left(west) = south.

left(east) = north.

right(Dir) = opp(left(Dir)).

opp(north) = south.

opp(south) = north.

opp(west) = east.

opp(east) = west.

next_pos(R, C, south, R1, C1) => R1 = R+1, C1 = C, R1 =< 100.

next_pos(R, C, north, R1, C1) => R1 = R-1, C1 = C, R1 >= 1.

next_pos(R, C, west, R1, C1) => R1 = R, C1 = C-1, C1 >= 1.

next_pos(R, C, east, R1, C1) => R1 = R, C1 = C+1, C1 =< 100.

� 19

record_room(Room, north) => Room = [y,_,_,_].

record_room(Room, south) => Room = [_,y,_,_].

record_room(Room, west) => Room = [_,_,y,_].

record_room(Room, east) => Room = [_,_,_,y].

output(Maze) =>

foreach(R in 1..len(Maze))

foreach(C in 1..len(Maze[1]))

Room = Maze[R,C],

if nonvar(Room) then

bind_vars(Room, n), % change vars to n

printf("%w", maze_code(Room))

end

end,

if nonvar(Maze[R,1]) then nl end

end.

maze_code([y,n,n,n]) = 1.

maze_code([n,y,n,n]) = 2.

maze_code([y,y,n,n]) = 3.

maze_code([n,n,y,n]) = 4.

maze_code([y,n,y,n]) = 5.

maze_code([n,y,y,n]) = 6.

maze_code([y,y,y,n]) = 7.

maze_code([n,n,n,y]) = 8.

maze_code([y,n,n,y]) = 9.

maze_code([n,y,n,y]) = a.

maze_code([y,y,n,y]) = b.

maze_code([n,n,y,y]) = c.

maze_code([y,n,y,y]) = d.

maze_code([n,y,y,y]) = e.

maze_code([y,y,y,y]) = f.

The two paths are read as two strings, FPath and BPath. The first step in the paths
is always ’W’, which indicates entering the maze, and the last step is also always
’W’, which indicates stepping out the maze. These two steps are disregarded. The
do case predicate creates a two-dimensional array of size 100 by 100, which is big
enough for passing the large test. Initially, all the entries of the array are variables.
The call between(1, 100, C) selects a column number C in the range from 1 to
100. Execution will backtrack to this call if either of the walks fails because a step
crosses the boundaries of the maze. The call record room(Maze[1,C], north)

records the fact that the first room is open in the north.
The predicate walk(Maze, R, C, EndR, EndC, Dir0, Dir, Path) pro-

cesses Path, starting at the position (R,C) and the direction Dir0. After the pred-
icate succeeds, EndR and EndC will be bound to the row and column numbers, re-
spectively, of the last room that was visited, and Dir will be bound to the direction

20 �

in which the last room was entered. For each step, if it is ’W’, then the predicate
next pos computes the position of the next room, and the walk continues from that
position in the same direction. Note that the walk cannot continue if the position is
outside of the array bounds. In that case, the program will backtrack to between(1,

100, C) to select the next column number C. If the step is ’L’ or ’R’, then the walk
continues from the same room but in a new direction.

After processing the two paths, the do case predicate calls output to print out
the room configurations in the required format. For each row number R and column
number C, the entry Maze[R,C] indicates a visited room if it is a list of the form
[N,S,W,E], where each element is either y, indicating that there is a door, or a free
variable, indicating that there is no door in that direction. The call bind vars(Room,

n) binds all the free variables in Room to n. The maze code function converts a room
configuration to the required code using pattern matching.

1.9 Acknowledgement
Two of the examples (Minimum Scalar Product and Alien Language) were origi-
nally written by Mike Bionchik. The author would like to thank Sergii Dymchenko
for bring GCJ to his attention, and the following people for giving very helpful
comments on early drafts of this article: Roman Barták, Peter Bernschneider, Mike
Bionchik, Jonathan Fruhman, Håkan Kjellerstrand, Annie Liu, Claudio Cesar de Sá,
and Bo Yuan (Bobby) Zhou.

