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Preface

Many complex systems, ranging from social, industrial, economics, financial, edu-
cational, to military, require that we obtain high-quality solutions to combinatorial
problems. Linear programming and its extensions developed in operations research
once formed the primary paradigm for solving combinatorial problems. During the
last three decades, a plethora of paradigms have been developed for combinatorial
problems, including constraint programming (CP), propositional satisfiability test-
ing (SAT), satisfiability modulo theories (SMT), answer set programming (ASP),
tabled logic programming, and heuristic search planners.

Picat is a new logic-based multi-paradigm programming language that integrates
logic programming, functional programming, dynamic programming with tabling,
and scripting. Picat provides facilities for solving combinatorial search problems,
including solver modules that are based on CP, SAT, and MIP (mixed integer pro-
gramming), and a module for planning that is implemented by the use of tabling.
Chapter 1 gives an overview of the Picat language and system.

This book presents Picat as a modeling and solving language for two important
classes of combinatorial problems: constraint satisfaction and planning. The con-
straint satisfaction problem (CSP) is a basic class of combinatorial problems. A
CSP consists of a set of variables, each of which is defined over a domain, a set of
constraints among the variables, and, optionally, an objective function. A solution
to a CSP is a valuation of the variables that satisfies all the constraints and optimizes
the objective function, if it exists. Chapters 2 and 3 are devoted to constraint mod-
eling. Chapter 2 introduces the basic built-in constraints in the common API of the
three solver modules (cp, sat, and mip), and gives several simple example models
that use these constraints. Chapter 3 describes the more sophisticated constraints in
the API and gives “real-world” example models for scheduling, resource allocation,
and design.

Planning is an important task for building many systems, such as autonomous
robots, industrial design software, system security, and military operational systems.
Planning is also closely related to model checking. Given an initial state, a set of goal
states, and a set of possible actions, the classic planning problem is to find a plan that
transforms the initial state to a goal state. Chapters 5 and 6 are devoted to planning.
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Chapter 5 introduces depth-unbounded search predicates in the planner module,
and gives models for several planning puzzles. Chapter 6 introduces depth-bounded
search predicates in the planner module, and shows how domain knowledge and
heuristics can be incorporated into planning models to improve the performance.
Because planning is solved as a dynamic programming problem with tabling in
Picat, a separate chapter (Chapter 4) is included to introduce the tabling feature of
Picat.

A combinatorial problem can normally be modeled in different ways and solved
by different solvers. The book is wrapped up with a chapter (Chapter 7) that gives
several models for solving the Traveling Salesman Problem with different solvers,
including CP, SAT, MIP, and tabled planning.

This book is useful for students, including undergraduate-level students, re-
searchers, and practitioners, to learn the modeling techniques for Picat. No prerequi-
site knowledge about Picat is required, although familiarity with logic or functional
programming is a plus. Chapter 1 gives an overview of the data types, built-ins, and
language constructs that are needed for the later chapters. For readers who are fa-
miliar with Prolog, Haskell, or Python, this chapter also compares Picat with these
three languages.

This book does not cover the implementation of Picat. The bibliographical note at
the end of each chapter aims to meet the reader’s curiosity about how the presented
tools are built. Each chapter ends with a set of exercises, which is intended for the
reader to practice the presented modeling techniques. The code examples used in the
book are available at: http://picat-lang.org/picatbook2015.html.
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Chapter 1
An Overview of Picat

Abstract Picat is a general-purpose programming language that includes features
from multiple programming paradigms. By combining imperative programming’s
control flow features with more advanced features from logic programming, func-
tional programming, and scripting, Picat provides users a wide array of tools for
efficiently creating programs to solve problems. A comparison with other program-
ming languages shows how Picat programs can be more compact, more intuitive,
and easier to read.

1.1 Introduction

Picat1 is a programming language that incorporates features from multiple pro-
gramming paradigms. The purpose of Picat is to bridge the gap between impera-
tive languages, which tell the computer how things should be done, and declarative
languages, which tell the computer what to do, without detailing how it should be
done. The inclusion of features from different programming families allows users to
create short, powerful, programs for a wide variety of applications.

For example, the following short code implements the quicksort algorithm. This
code will be explained in Section 1.4.3. For now, note that the algorithm can be
implemented in just a few lines of Picat code.

qsort([]) = [].
qsort([H|T]) = L =>

L = qsort([E : E in T, E=<H]) ++
[H] ++
qsort([E : E in T, E>H]).

Logic programming languages, such as Prolog, use a series of facts and rules
in order to define relationships. Logic programs find values that satisfy these rela-
tionships. Picat uses rule-based predicates in order to define relations, as described

1 Picat is freely available at http://picat-lang.org.

1



2 1 An Overview of Picat

in Section 1.4.1. Logic programs can backtrack in order to return multiple sets of
values that satisfy relationships. Backtracking is discussed in Section 1.4.1. Picat’s
logic programming features also include a unification operator that binds variables
to values. The unification operator is detailed in Section 1.2.4.

The following is an example of backtracking:

Picat> member(X,[1,2,3])
X = 1;
X = 2;
X = 3;
no

This example demonstrates how Picat’s member predicate backtracks. The first line
of this example represents input at the Picat interpreter, and the other lines represent
output. After Picat displays X = 1, the user types a semicolon (;), causing the
member predicate to backtrack, and to output X = 2. After this process repeats,
finding X = 3, no more solutions remain, and the system prints no.

Imperative programming languages, such as C and Java, focus on a program’s im-
plementation details. Picat incorporates imperative programming aspects that con-
trol the flow of a program, such as if-then-else statements and foreach loops. Con-
trol flow is discussed in Section 1.3, with Section 1.3.2 focusing on if-then-else
statements, and Section 1.3.4 focusing on foreach loops. Furthermore, imperative
programming languages have assignment statements that update a variable’s value.
Picat has an assignment operator, described in Section 1.3.3, that simulates tradi-
tional imperative assignment and re-assignment.

Functional programming languages, such as Haskell, treat a program as a series
of recursively-defined functions. Pattern-matching is used to define functions. Sec-
tion 1.4 shows the pattern-matching rules that Picat uses to define predicates and
functions. Section 1.4 also demonstrates how predicates and functions can be de-
fined recursively, in terms of themselves. Another feature of functional languages
is the ability to easily manipulate lists of values. Picat lists are described in Section
1.2.3.

Scripting languages, such as Python and Perl, are dynamic languages that provide
language constructs for concisely describing computations and for gluing a series
of tasks together. Scripting languages use an interpreter that can automate a series
of tasks. Picat includes a command-line interpreter that enables users to evaluate the
results of one or more statements.

1.1.1 Running Picat

The Picat interpreter is started with the OS command picat. Although Picat can
interpret a series of statements, it can also compile and run programs that are saved
in files. The built-in predicate cl(FileName) compiles and loads the source file
named FileName.pi within the Picat interpreter. This allows users to run a pro-
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gram’s predicates and functions. If the program has a predicate called main, the
command picat FileName Arg1 . . . Argn can be used to run the program as a
standalone.

Note that Picat has many more features than are covered in this chapter. For a
comprehensive coverage of Picat’s features, see the Picat User’s Guide.2

1.2 Data Types and Operators

Picat is a dynamically-typed language, in which type checking occurs at runtime.
Table 1.1 lists all of the operators that Picat provides. Picat also includes a % symbol,
which begins single-line comments, and the /* and */ symbols, which surround
multi-line comments.

Table 1.1 Operators in Picat

Precedence Operators
Highest ., @

** (right-associative)
unary +, unary -, ˜

*, /, //, /<, />, div, mod, rem
binary +, binary -

>>, <<
/\
ˆ
\/
..

++ (right-associative)
=, !=, :=, ==, !==, <, =<, <=, >, >=, ::, in, notin

#=, #!=, #<, #=<, #<=, #>, #>=, @<, @=<, @<=, @>, @>=
#˜
#/\
#ˆ
#\/

#=> (right-associative)
#<=>

not, once
, (right-associative), && (right-associative)

Lowest ; (right-associative), || (right-associative)

2 http://picat-lang.org/download/picat guide.pdf
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Table 1.2 Arithmetic Operators

X ** Y power
+X same as X
-X sign reversal
˜X bitwise complement

X * Y multiplication
X / Y division

X // Y integer division, truncated
X /> Y integer division (ceiling(X / Y ))
X /< Y integer division (floor(X / Y ))

X div Y integer division, floored
X mod Y modulo, same as X - floor(X div Y ) * Y
X rem Y remainder (X - (X // Y ) * Y )

X + Y addition
X - Y subtraction

X >> Y right shift
X << Y left shift
X /\ Y bitwise and
X ˆ Y bitwise xor

X \/ Y bitwise or
From .. Step .. To A range (list) of numbers with a step

From .. To A range (list) of numbers with step 1

1.2.1 Terms, Variables, and Values

Picat is a dynamically-typed language, in which type checking occurs at runtime.
A term is a variable or a value. A variable gets a type once it is bound to a value.
Variables in Picat, like variables in mathematics, are value holders. Unlike variables
in imperative languages, Picat variables are not symbolic addresses of memory lo-
cations. A variable is said to be free if it does not hold any value. A variable is in-
stantiated when it is bound to a value. Picat variables are single-assignment, which
means that after a variable is instantiated to a value, the variable will have the same
identity as the value. After execution backtracks over a point where a binding took
place, the value that was assigned to a variable will be dropped, and the variable will
be turned back into a free variable.

A variable name is an identifier that begins with a capital letter or the underscore.
For example, the following are valid variable names:

X1 _ _ab

The name is used for anonymous variables.
A term is ground if the term does not contain any variables. The built-in predicate

ground(Term) tests whether a term is ground.
A value in Picat can be primitive or compound.
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1.2.2 Primitive Values

A primitive value can be an atom, an integer, or a real number.
An atom is a symbolic constant. An atom name can be either unquoted or quoted.

An unquoted name is an identifier that begins with a lower-case letter, followed by
an optional string of letters, digits, and underscores. A quoted name is a single-
quoted sequence of arbitrary characters. A character can be represented as a single-
character atom.

A number can be an integer or a real number. An integer can be a decimal nu-
meral, a binary numeral, an octal numeral, or a hexadecimal numeral. A real number
consists of an optional integer part, an optional decimal fraction preceded by a dec-
imal point, and an optional exponent. Table 1.2 gives the meaning of each of the
numeric operators in Picat, from highest precedence to lowest precedence.

1.2.3 Compound Terms

A compound term can be a list, a string, or a structure. Picat defines two types of
special structures: arrays and maps.

A list takes the form [t1,. . .,tn], where each ti (1≤ i≤ n) is a term. The list is
represented internally as a singly-linked list. The index notation L[I] is a special
function that returns the Ith component of list L, with L[1] referring to the first
element of L. In order to represent a multi-dimensional list, an index notation can
take multiple subscripts. For example, the expression L[1,2] is the same as T[2],
where T is a temporary variable that references the component that is returned by
L[1]. The bar symbol, |, is a separator that separates the list’s first element (called
the head) from the rest of the list (called the tail). The cons notation [H|T] can
occur in a pattern or in an expression. When it occurs in a pattern, it matches any
list in which H matches the head and T matches the tail. When it occurs in an
expression, it builds a list from H and T . Note that the pattern [E1,E2|T] is the
same as [E1|[E2|T]]. Also note that T could be an empty list.

Picat provides a number of built-ins for lists. The new list(N) function cre-
ates a new list that has N free variable arguments. The ++ operator concatenates two
lists. The length(List) function returns the number of elements that are in List.
This function can also be represented in dot notation3 as List.length. Note that
the length of a list is not stored in memory; instead, it is recomputed each time that
the length function is called, which takes linear time in terms of the list’s size.

Picat also includes list comprehensions. A list comprehension is a special func-
tional notation for creating lists without specifying the individual values that the list
stores. List comprehensions have the following format:

[T : E1 in D1, Cond1, . . ., En in Dn, Condn]

3 In general, all functions can be called by using dot notation.
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T is an expression. Each Ei is an iterating pattern. Each Di is an expression that
gives a compound value. Each Condi is an optional condition on iterators E1 through
Ei.

The expression Ei in Di is called an iterator, which can take multiple forms.
The first form,

Value in Start .. End

uses the range, Start .. End, which generates a list that contains every integer
from Start through End, including Start and End. Another form,

Value in Start .. Step .. End

uses the range Start .. Step .. End. In this case, Start, Step, and End can
be integers or real numbers, and the values in the generated list will start at Start,
and will repeatedly increment by Step until End is reached or exceeded. Note that
increment can be negative. A third form is

Element in CompoundTerm

This iterator loops through each Element in the specified CompoundTerm.

Examples: Lists

Picat> L = new_list(5)
L = [_80bc,_80c4,_80cc,_80d4,_80dc]

Picat> L = [[1,2,3],[4,5,6]], Val = L[2,1]
L = [[1,2,3],[4,5,6]]
Val = 4

Picat> L = [1,2,3] ++ [4,5,6]
L = [1,2,3,4,5,6]

Picat> [H|T] = [a,b,c]
H = a
T = [b,c]

Picat> L = [I : I in 0 .. 2 .. 10]
L = [0,2,4,6,8,10]

Picat> L = [I : I in 0 .. 10, I mod 2 == 0]
L = [0,2,4,6,8,10]

Picat> L = [I : I in 1 .. -0.5 .. -1]
L = [1,0.5,0.0,-0.5,-1.0]



1.2 Data Types and Operators 7

Picat> L = [(C, I) : C in [a, b], I in 1 .. 2]
L = [(a,1),(a,2),(b,1),(b,2)]

In each of the above examples, the first line represents input at the Picat inter-
preter, and the other lines represent output. The first example creates a new list
that has five free variables. The second example creates the two-dimensional list
[[1,2,3],[4,5,6]], and demonstrates how the index notation accesses ele-
ments of the list. The third example uses the ++ operator, which concatenates two
lists. The fourth example shows how the separator | separates the head of a list from
the tail. This example also demonstrates the unification operator, which is described
in Section 1.2.4.

The last four examples demonstrate list comprehensions. The first list compre-
hension creates a list of the even numbers that are between 0 and 10. The second list
comprehension also creates a list of the even numbers that are between 0 and 10;
however, instead of looping through every other number, the second list comprehen-
sion loops through every number, and tests the numbers with the condition I mod
2 == 0. The third list comprehension demonstrates a negative value for Step. The
last list comprehension creates a list of pairs. Note that, in the last list comprehen-
sion, the first iterator iterates through a compound term, while the second iterator
iterates through a range.

A string, which appears between double quotes, is represented as a list of
single-character atoms. For example, the string "hello" is the same as the list
[h,e,l,l,o] and the list [’h’,’e’,’l’,’l’,’o’]. Picat’s built-ins for
lists, including the ++ operator and the length function, also operate on strings.

A structure has the form $s(t1,. . .,tn), where s stands for a structure name, n is
called the arity of the structure, and each ti (1≤ i≤ n) is a term. The dollar symbol
that precedes the structure is used to distinguish a structure from a function call.

An array is a special structure that takes the form {t1,. . .,tn}, where each ti
(1 ≤ i ≤ n) is a term. Arrays are similar to lists. Arrays can be created with a
new array function, can be concatenated with the ++ operator, can be passed
to the length function, and can be defined by array comprehensions. Note that
the separator | does not operate on arrays, since arrays are not built by conses.
Also note that, unlike a list, an array always has its length stored in memory, so the
function length(Array) always takes constant time.

A map is a hash-table that is represented as a special structure that contains a
set of key-value pairs. Maps are created with the built-in functions new map(N)
and new map(PairsList). The parameter N is an integer that represents the map’s
initial capacity, while the parameter PairsList is a list of pairs, where each pair
has the form Key = Val. Note that another way to create a map is with the func-
tion new map(N, PairsList), which passes both an initial capacity and a list of
pairs. The function size(Map) returns the number of key-value pairs that are in
Map. The predicate put(Map, Key, Val) adds the key-value pair Key = Val
to Map. The function get(Map, Key) = Val returns the Val of the key-value
pair Key = Val. If Map does not contain Key, then the get function throws an
error. The variant get(Map, Key, De f ault) = Val returns the default value
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De f ault if Map does not contain Key. The predicate has key(Map, Key) de-
termines whether Map contains Key.

Examples: Arrays and Maps

Picat> A = new_array(5)
A = {_83bc,_83c0,_83c4,_83c8,_83cc}

Picat> A = {{1,2,3},{4,5,6}}, Val = A[2,1]
A = {{1,2,3},{4,5,6}}
Val = 4

Picat> A = {1,2,3} ++ {4,5,6}
A = {1,2,3,4,5,6}

Picat> A = {(C, I) : C in {a, b}, I in 1 .. 2}
A = {(a,1),(a,2),(b,1),(b,2)}

Picat> M = new_map(5)
M = (map)[]

Picat> M = new_map([one=1,two=2]), put(M, three, 3)
M = (map)[two = 2,one = 1,three = 3]

Picat> M = new_map([one=1,two=2]), Val = get(M, one)
M = (map)[two = 2,one = 1]
Val = 1

Picat> M = new_map([one=1]), has_key(M, two)
no

Picat> M = new_map([one=1]), Val = get(M, two, 0)
M = (map)[one = 1]
Val = 0

The first example creates a new array that has five free variables. The second ex-
ample creates the two-dimensional array {{1,2,3},{4,5,6}}, and demonstrates
how the index notation accesses elements of the array. The third example uses the
++ operator to concatenate two arrays. The fourth example demonstrates an array
comprehension. Note that array comprehensions are similar to list comprehensions,
except that array comprehensions use the symbols {} instead of [].

The next five examples show how to create, modify, and access maps. The first
map example creates a map that has an initial capacity of 5. The second map ex-
ample creates a map that initially has two key-value pairs, and then uses the put
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predicate to add a third key-value pair to the map. The third map example shows
how the get function can be used to retrieve a value from a map. The last two map
examples show what happens when a map does not contain a key. The map does not
contain the key two, so has key fails, while get/3 returns the default value 0.

1.2.4 Equality Testing and Unification

The equality test T1 == T2 is true if term T1 and term T2 are identical. Two variables
are identical if they are aliases. Two primitive values are identical if they have the
same type and the same internal representation. Two lists are identical if the heads
are identical and the tails are identical. Two structures are identical if their names
and lengths are the same and their components are pairwise identical. The inequality
test T1 !== T2 is the same as not T1 == T2. Note that two terms can be identical
even if they are stored in different memory locations.

The unification T1 = T2 is true if term T1 and term T2 are already identical, or if
they can be made identical by instantiating the variables in the terms. The built-in
T1 != T2 is true if term T1 and term T2 are not unifiable.

Given the unification T1 = T2: (a) If T1 is a variable, then the system binds it to
T2. (b) If T2 is a variable, then the system binds it to T1. (c) If both T1 and T2 are
atomic values, then the unification succeeds if the values are identical, and fails if
the values are not identical. (d) If T1 = $ f (A1, . . . ,Am) and T2 = $g(B1, . . . ,Bn), then
the unification fails if variable f != g or arity m != n; otherwise, the unification
returns the results of A1 = B1, ..., Am = Bn.

Examples: Unification

Picat> X = 1
X = 1

Picat> $f(X,b) = $f(a,Y)
X = a
Y = b

Picat> $f(X,Y) = $f(a,b,c)
no

Picat> [H|T] = [a,b,c]
H = a
T = [b,c]

The first example binds X to 1. The second example unifies two structures by
binding X to a and Y to b. The third example fails, because the two structures do
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not have the same length. The fourth example matches H to the head of the list, and
matches T to the tail of the list.

1.2.5 I/O and Modules

Picat provides a number of built-ins for performing input and output operations.
For example, the function read int() = Integer reads an integer from stan-
dard input. In order to write to standard output, Picat includes the predicates
writeln(Term) and println(Term). These predicates write Term followed
by a newline, meaning that the output of the next write will begin on the next line.
To omit the newline, use write(Term) or print(Term). The nl predicate can
be used to print a newline.

The difference between the write and print predicates is that the write
predicates place quotes around strings and atoms whenever necessary, so that they
remain the same when read back by Picat, while the print predicates do not place
quotes around strings and atoms. For example, write(’X’) outputs ’X’, which
is still an atom when read back by Picat. However, print(’X’) outputs X, which
becomes a variable when read back by Picat.

Picat has library module files that include additional built-ins. In order to use
these built-ins from within other modules, a Picat file must begin with an import
declaration of the form import Name1, . . ., Namen, where each Namei is a
module name. The four basic modules, which are basic, math, sys, and io, are
imported by default. Picat’s other modules include cp, sat, and mip, which are
used to solve constraint satisfaction problems, as demonstrated in Chapters 2 and 3.
Another of Picat’s modules is the planner module, which is shown in Chapters 5
and 6.

1.3 Control Flow and Goals

1.3.1 Goals

A goal is made from predicate calls and statements. Suppose that P and Q are goals.
The conjunction of the goals, written as P,Q or P && Q, succeeds if both goals P
and Q succeed. The disjunction of the goals, written as P;Q or P || Q, succeeds if
either P or Q succeeds. The built-in predicate true always succeeds, and the built-
in predicates fail and false always fails. The negation of a goal, written as not
P, succeeds if P fails. Through the use of backtracking, as described in Section 1.4.1,
goals can succeed more than once. The goal once P can never succeed more than
once.
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1.3.2 If-Then-Else

Another type of goal is the if-then-else statement, which is used to perform different
operations, depending on whether or not certain conditions are fulfilled. If-then-else
statements take the form

if Cond1 then
Goal1

elseif Cond2 then
Goal2
...

elseif Condn then
Goaln

else
Goalelse

end

where the elseif and else clauses are optional. If the else clause is missing,
then the else goal is assumed to be true. For the if-then-else statement, Picat
finds the first condition Condi that is true. If such a condition is found, then the truth
value of the if-then-else statement is the same as Goali. If none of the conditions is
true, then the truth value of the if-then-else statement is the same as Goalelse.

Note that Picat also accepts if-then-else in the form (If->Then;Else), man-
dating the presence of the Else part. This style of if-then-else matches Prolog’s
style.

Example: If-Then-Else

main =>
Score = 74,

% Assigns a letter grade based on the score.
if Score >= 90 then

Grade = a
elseif Score >= 80 then

Grade = b
elseif Score >= 70 then

Grade = c
elseif Score >= 60 then

Grade = d
else

Grade = f
end,
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% Determines whether Score passes or fails.
(Score >=60 -> println("Pass"); println("Fail")).

This example demonstrates if-then-else statements and Prolog-style if-then-else
statements. First, a score is assigned. Then, the if-then-else conditions determine the
letter grade. Since the score is 74, the goal Score >= 70 succeeds, and Grade
is set to c. When Score >= 70 succeeds, the remaining branches of the state-
ment are not evaluated. The last line of the program uses a Prolog-style if-then-else
statement to determine whether the score passes or fails.

The following code can also be used to determine whether the score passes or
fails:

Message = cond(Score >= 60, pass, fail)

This code uses Picat’s conditional expression, which takes the form Value =
cond(Condition,T hen,Else). If Condition is true, then Value is unified with
T hen; otherwise, Value is unified with Else. In this example, the score is 74, so
Message receives a value of pass.

This example also shows the use of the comparison operators. These operators
include >, <, >=, =<, <=, ==, and !==. Note that both the =< and the <= operators
indicate less-than-or-equals.

Unlike the previous examples, the code in this example is stored in a main pred-
icate. User-defined predicates and functions are detailed in Section 1.4.

1.3.3 The Assignment Operator

Picat variables are single-assignment, meaning that once a variable is bound to a
value, the variable cannot be bound again, unless the value is a variable or the value
contains variables. In order to simulate imperative language variables, Picat provides
the operator :=, which allows assignments in rule bodies. An assignment takes the
form LHS := RHS, where LHS is either a variable or an access of a compound
value in the form X[...]. When LHS is an access in the form X [I], the component
of X indexed I is updated. This update is undone if execution backtracks over this
assignment.

Example: Assignments

main => X=0, X:=X+1, X:=X+2, write(X).

In order to handle assignments, Picat creates new variables at compile time. In
the above example, at compile time, Picat creates a new variable, say X1, to hold the
value of X after the assignment X:=X+1. Picat replaces X by X1 on the LHS of the
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assignment. It also replaces all of the occurrences of X to the right of the assignment
by X1. When encountering X1:=X1+2, Picat creates another new variable, say X2,
to hold the value of X1 after the assignment, and replaces the remaining occurrences
of X1 by X2. When write(X2) is executed, the value held in X2, which is 3, is
printed. This means that the compiler rewrites the above example as follows:

main => X=0, X1=X+1, X2=X1+2, write(X2).

1.3.4 Foreach Loops

Picat provides foreach loops, which are imperative programming constructs for per-
forming repetitions. A foreach loop has the form:

foreach (E1 in D1, Cond1, . . ., En in Dn, Condn)
Goal

end

The form of foreach loops is similar to the form of list comprehensions, as described
in Section 1.2.3. Each Ei is an iterating pattern. Each Di is an expression that gives
a compound value. Each Condi is an optional condition on iterators E1 through Ei.

Example: Transpose an Array

main =>
% sample matrix
Matrix = {{1,2,3},{4,5,6}},

N = length(Matrix),
M = length(Matrix[1]),
Transposed = new_array(M,N),

% transposes the matrix
foreach (I in 1..N, J in 1..M)

Transposed[J,I] = Matrix[I,J]
end,

% prints the transposed matrix
foreach (Row in Transposed)

println(Row)
end.

This example takes the 2×3 two-dimensional array:

{{1, 2, 3},
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{4, 5, 6}}

and transposes it into the 3×2 array:

{{1, 4},
{2, 5},
{3, 6}}

This example demonstrates the use of arrays, including the index notation Matrix[I]
and the new array function. The first foreach loop uses two range iterators to
transpose the Matrix array. If a foreach loop has multiple iterators, then it is com-
piled into a series of nested foreach loops in which each nested loop has a single
iterator. In other words, a foreach loop with multiple iterators executes its goal once
for every possible combination of values in the iterators. The first foreach loop cor-
responds to

foreach (I in 1..N)
foreach (J in 1..M)

Transposed[J,I] = Matrix[I,J]
end

end

The second foreach loop iterates through the transposed array, printing one row at a
time.

A loop statement forms a name scope. Variables that occur only in a loop, but do
not occur before the loop in the outer scope, are local to each iteration of the loop.
For example, in the following rule:

main =>
A = {1,2,3},
foreach (I in 1 .. length(A))

E = A[I],
writeln(E)

end.

the variables I and E are local, and each iteration of the loop has its own values for
these variables. Note that, like a loop statement, a list comprehension also forms a
name scope.

Loops are compiled into tail-recursive predicates. Section 1.4.1 describes tail-
recursive predicates.

1.4 Predicates and Functions

In Picat, predicates and functions are defined with pattern-matching rules. Each rule
is terminated by a dot (.) followed by a white space.
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1.4.1 Predicates

A predicate defines a relation, and can have zero, one, or multiple answers. Picat
has two types of pattern-matching rules to define predicates: the non-backtrackable
rule:

Head => Body

or

Head, Cond => Body

and the backtrackable rule:

Head ?=> Body

or

Head, Cond ?=> Body

Within a predicate, the Head is a pattern in the form p(t1, . . . , tn), where p is called
the predicate name, each ti is a parameter or an argument and n is called the ar-
ity. When n = 0, the parentheses can be omitted. The condition Cond, which is an
optional goal, specifies a condition under which the rule is applicable. Cond can-
not succeed more than once. A predicate is said to be deterministic if it is defined
with only non-backtrackable rules, and non-deterministic if at least one of its rules
is backtrackable. Note that, as shorthand, predicates and functions can be described
as name/arity. For example, the length function has one parameter, and can
be described as length/1, while the put function, discussed in Section 1.2.3, has
three parameters, and can be described as put/3.

For a call C, if C matches the pattern p(t1, . . . , tn) and Cond is true, then the rule
is said to be applicable to C. When applying a rule to call C, Picat rewrites C into
Body. If the used rule is non-backtrackable, then the rewriting is a commitment, and
the program can never backtrack to C. However, if the used rule is backtrackable,
then the program will backtrack to C once Body fails, meaning that Body will be
rewritten back to C, and the next applicable rule will be tried on C. In order to
backtrack within the Picat interpreter, once a result is returned, the user can type a
semicolon (;) to retrieve the next possible result, if there is such a result.

A pattern can contain as-patterns in the form V@Pattern, where V is a new vari-
able in the rule, and Pattern is a non-variable term. The as-pattern V@Pattern is the
same as Pattern in pattern matching, but after pattern matching succeeds, V is made
to reference the term that matched Pattern. As-patterns can avoid reconstructing
existing terms. For example,

p(V@[a|X]) => q(V).

is the same as

p([a|X]) => q([a|X]).

The difference is that in the former rule, the term [a|X] is not recreated, but in the
latter rule, the term [a|X] is recreated.
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Example: Min and Max of List

min_max1(List, Min, Max), List = [First|Rest] =>
Mn = First,
Mx = First,
foreach (Value in Rest)

if Value < Mn then
Mn := Value

elseif Value > Mx then
Mx := Value

end
end,
Min = Mn,
Max = Mx.

In this example, the min max1 predicate returns the minimum value of List in
Min, and returns the maximum value of List in Max. The condition List =
[First|Rest] ensures that the predicate is not passed an empty list, and sepa-
rates the head of the list from the tail. This allows the head to be stored as the initial
minimum and maximum values. Then, the foreach loop cycles through each value in
the list’s tail, using an if-then-elseif statement to determine whether the value is less
than the current minimum or greater than the current maximum. If either of these
tests succeeds, the assignment operator := updates the corresponding variable.

The following is a sample call to the min max1 predicate:

min max1([17, 3, 41, 25, 8, 1, 6, 40], Min, Max)

The following predicate can also be used to find the minimum and maximum
values of a list:

min_max2(List, Min, Max), List !== [] =>
Min = min(List),
Max = max(List).

Instead of using a foreach loop and an if-then-elseif statement, the min max2 pred-
icate uses two of Picat’s built-ins. The built-in min(List) finds the smallest value in
a list. The built-in max(List) finds the largest value in a list. Note that the condition
List !== [] ensures that the min max2 predicate is not passed an empty list.

Example: The zip Function

The function zip(List1, List2, . . ., Listn) returns a zipped list of array tuples
from the argument lists, where n can be 2, 3, or 4. The zip/2 function is imple-
mented as follows:
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zip([],_) = [].
zip(_,[]) = [].
zip([X|Xs],[Y|Ys]) = [{X,Y}|zip(Xs,Ys)].

The zip function can be used in an iterator in order to iterate over two or more
lists simultaneously. For example, consider the following code:

main =>
printf("The zipped list: %w%n", zip(1..2,3..4)),
foreach ({X,Y} in zip(1..2,3..4))

printf("%d+%d = %d%n",X,Y,X+Y)
end.

This has the output:

The zipped list: [{1,3},{2,4}]
1+3 = 4
2+4 = 6

Within the foreach loop, the Picat compiler generates code for iterating over the list
of pairs without actually computing the zipped list.

Example: Implementation of member/2

A rule is said to be tail-recursive if the last call of the body is the same predicate as
the head. The last-call optimization enables last calls to reuse the stack frame of the
head predicate if the frame is not protected by any choice points. This optimization
is especially effective for tail-recursion, because it converts recursion into iteration.
Tail-recursion runs faster and consumes less memory than non-tail-recursion. For
example:

member(X,[Y|_]) ?=> X=Y.
member(X,[_|L]) => member(X,L).

This example demonstrates the implementation of Picat’s built-in member predi-
cate. member(Term, List) determines whether Term is an element of List. The
first rule of the member predicate is backtrackable, allowing Term to be instanti-
ated to different elements of the list. The second rule is tail-recursive, because the
end of the rule calls the member predicate again.

1.4.2 Predicate Facts

For an extensional relation that contains a large number of Prolog-style facts, it is
tedious to define such a relation as a predicate with pattern-matching rules. In order
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to facilitate the definition of extensional relations, Picat allows the inclusion of pred-
icate facts in the form p(t1,. . .,tn) in predicate definitions. Facts and rules cannot
co-exist in predicate definitions, and facts must be ground. A predicate definition
that consists of facts must be preceded by an index declaration in the form

index (M11,M12, . . . ,M1n) . . . (Mm1,Mm2, . . . ,Mmn)

where each Mi j is either + (meaning indexed) or − (meaning not indexed). Facts
are translated into pattern-matching rules before they are compiled.

Example: Predicate Facts

index (+,-) (-,+)
edge(a,b).
edge(a,c).
edge(b,c).
edge(c,b).

The predicate edge, which represents edges in a graph, is translated into the fol-
lowing rules:

edge(a,Y) ?=> Y=b.
edge(a,Y) => Y=c.
edge(b,Y) => Y=c.
edge(c,Y) => Y=b.
edge(X,b) ?=> X=a.
edge(X,c) ?=> X=a.
edge(X,c) => X=b.
edge(X,b) => X=c.

The edge predicate can be queried as follows:

Picat> edge(a,X), edge(X,Y)
X = b
Y = c;
X = c
Y = b

Note the semicolon after Y = c. When the user types the semicolon, the system
backtracks, finding a second possible solution. This is an example of a multi-value
query, which finds two results through backtracking: X = b, Y = c and X =
c, Y = b.
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1.4.3 Functions and Function Facts

A function is a special kind of a predicate that always succeeds with one answer. In
order to define functions, Picat uses the pattern-matching rule:

Head = Exp => Body

or

Head = Exp, Cond => Body

Within a function, the Head is an equation f (t1, . . . , tn) = X , where f is called the
function name, and X is an expression that gives the return value. Functions are
defined with non-backtrackable rules only.

For a call C, if C matches the pattern f (t1, . . . , tn) and Cond is true, then the rule
is said to be applicable to C. When applying a rule to call C in the equation Res =
C, Picat rewrites the equation into (Body, Res = Exp).

Picat allows inclusion of function facts in the form f(t1,. . .,tn) = Exp in func-
tion definitions. The function fact f(t1,. . .,tn) = Exp is shorthand for the rule

f(t1,. . .,tn) = X => X = Exp

where X is a new variable.
Although all functions can be defined as predicates, it is preferable to define

them as functions for two reasons. Firstly, functions often lead to more compact
expressions than predicates, because arguments of function calls can be other func-
tion calls. Secondly, functions are easier to debug than predicates, because functions
never fail and never return more than one answer.

Example: Quicksort

qsort([]) = [].
qsort([H|T]) = L =>

L = qsort([E : E in T, E=<H]) ++
[H] ++
qsort([E : E in T, E>H]).

This example performs the quicksort algorithm to sort a list. The first rule is a func-
tion fact. The second rule is a function that concatenates three lists. Note that the
second rule contains two recursive calls.

The following is a sample call to the qsort function:

L = qsort([17, 3, 41, 25, 8, 1, 6, 40])

Note that a function call cannot be used as a goal, even if the function returns true
or false. Instead, a function call must be used in an expression.
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1.4.4 Introduction to Tabling

A predicate defines a relation where the set of facts is implicitly generated by the
rules. The process of generating the facts may never end and/or may contain a lot of
redundancy. Tabling can prevent infinite loops and redundancy by memorizing calls
and their answers. In order to have all calls and answers of a predicate or function
tabled, users just need to add the keyword table before the first rule.

Example: Fibonacci Numbers

table
fib(1) = 1.
fib(2) = 1.
fib(N) = F, N > 2 => F = fib(N-1)+fib(N-2).

This example demonstrates a function fib(N) that finds the Nth Fibonacci num-
ber. Fibonacci numbers are recursively defined as: f(1) = 1, f(2) = 1,
f(N) = f(N-1) + f(N-2). When not tabled, the function call fib(N) takes
exponential time in N. However, when tabled, it only takes linear time.

For more details on tabling, see Chapter 4.

1.5 Picat Compared to Other Languages

Picat integrates several programming paradigms, including logic programming, im-
perative programming, functional programming, scripting, dynamic programming
with tabling, and constraint programming. This section compares Picat with Prolog
as a logic programming language, Haskell as a functional programming language,
and Python as a scripting language.

1.5.1 Picat vs. Prolog

Although Picat is a multi-paradigm language, its core is underpinned by logic pro-
gramming concepts, including logic variables, unification, and backtracking.

Like in Prolog, logic variables in Picat are value holders. A logic variable can
be bound to any term, including another logic variable. Logic variables are single-
assignment, meaning that once a variable is bound to a value, the variable takes the
identity of the value, and the variable cannot be bound again, unless the value is a
variable or contains variables.
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In both Prolog and Picat, unification is a basic operation, which can be utilized
to unify terms. Unlike Prolog, Picat uses pattern-matching, rather than unification,
to select applicable rules for a call. Consider the predicate membchk/2, which
checks whether a term occurs in a list. The following are its definitions in Prolog
and in Picat:

% Prolog
membchk(X,[X|_]) :- !.
membchk(X,[_|T]) :- membchk(X,T).

% Picat
membchk(X,[X|_]) => true.
membchk(X,[_|T]) => membchk(X,T).

For a call membchk(X,L), if both X and L are ground, then the call has the same
behavior under both the Prolog and the Picat definitions. However, if X or L is not
ground, then the call may give different results in Prolog and in Picat. For example,
the call membchk(a, ) and the call membchk( ,[a]) succeed in Prolog, but
they fail in Picat. Pattern-matching is a simpler operation than unification. Pattern-
matching rules in Picat are fully indexed, while Prolog clauses are typically indexed
on one argument. Therefore, Picat can be more scalable than Prolog.

Picat, like Prolog, supports backtracking. In Prolog, every clause is implicitly
backtrackable, and the cut operator ! can be utilized to control backtracking. In
contrast, backtrackable rules in Picat must be explicitly denoted, which renders the
cut operator unnecessary. Consider the predicate member/2, as defined in Prolog
and in Picat:

% Prolog
member(X,[X|_]).
member(X,[_|T]) :- member(X,T).

% Picat
member(X,[Y|_]) ?=> X = Y.
member(X,[_|T]) => member(X,T).

For a call member(X,L), if L is a complete list,4 then the call has the same behav-
ior under both the Prolog and the Picat definitions. If L is incomplete, then the call
can succeed an infinite number of times under the Prolog definition, because unify-
ing Lwith a cons always succeeds when L is a variable. In contrast, pattern matching
never changes call arguments in Picat. Therefore, the call member(X,L) can never
succeed more times than the number of elements in L.

Picat also differs from Prolog in several other aspects, such as the lack of support
for dynamic predicates and for user-defined operators in Picat. The most distinguish-
able difference between Prolog and Picat is in Picat’s language constructs, includ-
ing list and array comprehensions, assignable variables, loops, and functions. These

4 A list is complete if it is empty, or if its tail is complete. For example, [a,b,c] and [X,Y,Z]
are complete, but [a,b|T] is not complete if T is a variable.
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language constructs, together with the built-in array and map data types, make Picat
more convenient than Prolog for scripting and modeling tasks. This book is full of
examples for constraint solving and planning that benefit from these constructs.

The following gives an example function in Picat, which takes two matrices, A
and B, and returns the product A×B:

matrix_multi(A,B) = C =>
C = new_array(A.length,B[1].length),
foreach (I in 1..A.length, J in 1..B[1].length)

C[I,J] = sum([A[I,K]*B[K,J]
: K in 1..A[1].length])

end.

Prolog’s definition of the same function would be 10 times as long as Picat’s defini-
tion. Furthermore, since the Picat compiler translates loops and list comprehensions
into tail recursion, which is further converted into iteration by tail-recursion opti-
mization, the Picat version is as fast as the Prolog version, if not faster.

1.5.2 Picat vs. Haskell

Like Haskell, Picat supports function definitions with pattern-matching rules. A ma-
jor difference between Haskell and Picat is that Haskell is a statically-typed lan-
guage, while Picat is a dynamically-typed language. In Haskell, every variable has a
known type at compile time, while in Picat, a variable is typeless until it is bound to
a value. Although static typing allows the Haskell compiler to detect type errors and
to optimize code generation by automatically inferring types, Picat is more flexible
than Haskell.

Haskell is a pure functional language, while the core of Picat is a logic lan-
guage. Haskell and Picat, as two declarative programming languages, discourage
the use of side effects in describing computations. All of the built-in functions in
Picat’s basic module are side-effect-free mathematical functions. For example,
the sort(L) function returns a sorted copy of list L without changing L, and the
remove dups(L) function returns a copy of L that has no duplicate values. Pure,
side-effect-free functions are not dependent on the context in which they are applied.
This purity can greatly enhance the readability and maintainability of programs.

In Haskell, impure computations that have side effects are described as monads.
Haskell’s type system distinguishes between pure and monadic functions. In Picat,
side effects can be caused by the assignment operator := and by certain built-ins,
such as those that perform I/O. An assignment of the form S[I] := RHS has
global side effects, since the compound term S is destructively updated, like an as-
signment in an imperative language. An assignment of the form X := RHS, where
X is a variable, only has a side effect within the body of the rule in which the assign-
ment occurs. Recall that the compiler introduces a new variable for X and replaces
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the remaining occurrences of X by the new variable. Variable assignments do not
have cross-predicate or cross-function side effects.

In Haskell, using higher-order functions is a basic norm of programming. Al-
though Picat has limited support for higher-order predicates, such as call/n, and
functions, such as apply/n, map/2, and fold/3, the use of higher-order calls is
discouraged, because of the overhead. Whenever possible, recursion, loops, or list
and array comprehensions should be used instead.

In Picat, the unification operator = and the equality operator == can be used on
any two terms. In contrast, in Haskell, the equality operator == can only be used on
certain types of values. For example, consider the membchk function in Haskell:

membchk x (y:z)
| x == y = True
| otherwise = membchk x z

membchk _ [] = False

This function has the type (Eq a) => a -> [a] -> Bool, which requires
type a to be an instance of a typeclass that defines the equality operator.

Haskell supports implicit lazy evaluation, meaning that the evaluation of an ex-
pression can be delayed until the value of the expression is needed. In contrast, Picat
is a strict language, meaning that arguments are completely evaluated before calls
are evaluated. Lazy evaluation allows for the creation of infinite lists. For example,
the Haskell expression [1,2..] creates an infinite list of positive integers. In Pi-
cat, the freeze(X,Call) predicate, which delays Call until X is instantiated,
can be used to simulate lazy evaluation, and infinite data can be created through
the use of backtracking. For example, the following predicate generates an infinite
sequence of positive integers:

gen(X) ?=> X =1.
gen(X) => gen(X1), X = X1+1.

Picat is essentially a relational language. Logic variables and automatic back-
tracking are two features that make Picat more suitable for search problems than
Haskell. The built-in predicate append is probably one of the most powerful and
convenient nondeterministic predicates in Picat. The following examples illustrate
several different uses of this predicate:

append(Pre, ,L) Checks if Pre is a prefix of L
append( ,Suf,L) Checks if Suf is a suffix of L
append( ,[Last],L) Retrieves the last element of L
append(Part1,[Sep|Part2],L) Splits L into 2 parts separated by Sep

Logic variables are easily extended to domain variables, which enable the natu-
ral specification of constraints. Although it is possible to simulate backtracking by
using lazy evaluation in Haskell, the native support of backtracking is an advantage
of Picat for relational programming.
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1.5.3 Picat vs. Python

Both Python and Picat are dynamically-typed and interpreted languages that em-
phasize flexibility and brevity of description more than the efficiency of programs.

Python is an imperative language and many of its built-ins have side effects.
For example, the lst.sort() method destructively sorts the list lst, and the
lst.remove(elm) method destructively removes elm from lst. Side effects
can make code less manageable.

Lists in Picat, like lists in Prolog and Haskell, are linked lists, while lists in
Python are dynamic arrays. In Picat, for a list L, the function call len(L) takes
linear time in the size of L, and the list access L[I] takes I steps to reach the Ith
element. In contrast, in Python, both len(L) and L[I] take constant time. Picat
supports constant-time access of array elements, but Picat’s arrays are not dynamic.

Python does not support tail-recursion optimization. Because of this, iteration is
more often favorable than recursion for describing repetitions. For example, con-
sider the following definition of membchk in Python:

def membchk(elm, lst):
if lst == []:

return False
else:

[head,*tail] = lst
if head == elm:

return True
else:

return membchk(elm,tail)

This definition is not efficient since: (1) the assignment [head,*tail] = lst
creates a new list object, and (2) the recursive call membchk(elm,tail) cre-
ates a new frame on the stack, rather than reusing the caller’s stack frame. A more
efficient implementation is to use a loop to iterate over the list.

As can be seen in the membchk function shown above, Python allows patterns
on the left-hand sides of assignments. While pattern-matching is a nice feature of
Python, pattern-matching rules in Picat (and in Haskell) are more easily manageable
and efficient. Each pattern-matching rule has its own naming scope, which enables
the addition and removal of rules without affecting other rules. Pattern-matching
rules are fully indexed, and in many cases pattern-directed branching is much more
efficient than if-then-else.

Unlike Python, Picat does not support object-orientation. It is possible to simu-
late abstract data types in Picat using the module system. For example, a rectangle
class can be defined in a module that provides a function named new rect for
creating a rectangle structure, functions for getting and setting the attribute values
of a rectangle, and some other functions, including a function that computes a rect-
angle’s area. Picat’s dot notation makes calling a function on a structure look like
calling a method on an object. For example, the following query creates a rectangle
and computes its area:
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R = new_rect(100,100), Area = R.area().

More syntax extensions are necessary to make Picat a full-fledged OOP language.
As a logic language, Picat has the same advantages over Python as it has over

Haskell for search problems. Python has been used as a host language for con-
straint programming and linear programming solvers. Logic variables tend to make
Picat models neater than their Python counterparts. Backtracking makes it conve-
nient to implement some search strategies, such as branch-and-bound and iterative-
deepening, for the underlying solvers.

1.6 Writing Efficient Programs in Picat

This section gives several Picat-specific tips for writing efficient programs.

1.6.1 Making Definitions and Calls Deterministic

Backtracking is a nice feature of Picat, which facilitates describing and solving
search problems. However, backtracking is not cost-free. A call to a nondeterminis-
tic predicate uses a frame that stores not only the call’s arguments and the caller’s
environment, but also the information needed for backtracking. As long as the call
has rules that have not yet been applied, the frame stays on the stack. For this reason,
it is always good practice to make definitions deterministic, if possible, by using the
non-backtracking rule LHS => RHS instead of the backtrackable rule LHS ?=>
RHS.

The once operator can be utilized to inform the system that a call is required to
succeed at most once. For example, consider the call

append(Str1,[Sep|Str2],Str).

One of the uses of this call is to split the string Str into two substrings, Str1 and
Str2, that are separated by Sep. For example,

Picat> append(Str1,[’ ’|Str2],"hello world Picat")
Str1 = [h,e,l,l,o]
Str2 = [w,o,r,l,d,’ ’,’P’,i,c,a,t] ?;

Str1 = [h,e,l,l,o,’ ’,w,o,r,l,d]
Str2 = [’P’,i,c,a,t] ?

If only one answer is needed, then the call should be written as

once append(Str1,[Sep|Str2],Str).

After the call succeeds, the system deallocates the call’s frame. The use of once
can lead to better efficiency, because it prevents the system from performing unnec-
essary backtracking.
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Some of Picat’s nondeterministic built-ins have deterministic counterparts. For
example, while member(X,L) can succeed multiple times, membchk(X,L) can
succeed at most once. If the purpose of the call is to check if a value X is a member of
a list, then membchk(X,L) should be used, because it is generally more efficient
than once member(X,L).

1.6.2 Making Definitions Tail-Recursive

The Picat compiler adopts an optimization technique, called last-call optimization,
which enables the last call in a rule’s body to reuse the caller’s stack frame un-
der certain circumstances. This optimization is especially effective for tail-recursive
definitions, since it essentially converts recursion into iteration. Consider the fol-
lowing function:

length([]) = 0.
length([_|T]) = length(T)+1.

The second rule is recursive, but not tail-recursive, because the last function call in
the body is addition. One technique for converting non-tail-recursive definitions into
tail-recursive ones is to use an extra argument which accumulates a value during
recursion and returns the value when the base case is reached. For example, the
length/2 predicate can be converted into the following tail-recursive definition:

length(L) = length(L,0).

length([],Len) = Len.
length([_|T],Len) = length(T,Len+1).

The second argument of length/2 accumulates the number of elements that have
been scanned so far. In the beginning, the accumulator has the value 0. After each
element is scanned, the accumulator is incremented. When the list becomes empty,
the accumulator is returned as the length of the original list.

1.6.3 Incremental Instantiation and Difference Lists

Incremental instantiation means passing a non-ground term to a predicate and let-
ting the predicate instantiate some of the variables in the term. The resulting term
can be passed to another predicate. In this way, computation can be done by incre-
mentally instantiating terms.

Incremental instantiation can be used to construct lists. For example, the follow-
ing sequence of unification calls incrementally creates the list [a,b,c]:

L = [a|L1], L1 = [b|L2], L2 = [c|L3], L3 = []



1.6 Writing Efficient Programs in Picat 27

The statement L = [a|L1] can be viewed as calling a predicate that takes L and
L1 as parameters and creates the list [a] as a difference list, L-L1. Similarly, the
call L1 = [b|L2] creates the list [b] as the difference L1-L2. This sequence
of unification calls is as efficient as the call L = [a,b,c], and is more efficient
than [a] ++ [b] ++ [c].

Difference lists are useful for writing tail-recursive predicates, and can some-
times reduce the time and space complexity by eliminating the need to call ++. For
example, consider the following function, which returns the flattened list of a nested
list:

flatten([]) = [].
flatten([H|T]) = flatten(H) ++ flatten(T).
flatten(Any) = [Any].

The following gives an example use of this predicate:

Picat> FL = flatten([[[a],b],c]).
FL = [a,b,c]

Given the nested list, [[[a],b],c], the predicate flattens it into the list [a,b,c].
The above definition of flatten is not efficient, because: (1) it is not tail-

recursive, and (2) it may take more than linear time to flatten a list. The following
gives a more efficient definition:

flatten(L) = FL => flatten(L,FL,[]).

flatten([],FL,FLr) => FL = FLr.
flatten([H|T],FL,FLr) =>

flatten(H,FL,FL1),
flatten(T,FL1,FLr).

flatten(Any,FL,FLr) => FL = [Any|FLr].

The predicate call flatten(L,FL,FLr) returns the flattened list of L as the dif-
ference list FL-FLr. If L is empty, then the flattened list is also empty, meaning that
FL = FLr. If L is the cons [H|T], then the flattened list of L is FL-FLr, which
consists of the flattened part of H (FL-FL1) and the flattened part of T (FL1-FLr).

1.6.4 Writing Efficient Iterators

In Picat, there are normally several different ways of describing the same repeated
computation. Programmers should know which is the most efficient way of describ-
ing the computation. Consider the following two loop statements:

foreach (E in L)
print(E)

end.



28 1 An Overview of Picat

foreach (I in 1..length(L))
print(L[I])

end.

If L is an array, then the two loops have the same performance. For an array L,
length(L) and L[I] both take constant time to compute. If L is a list, then the
first loop takes linear time, while the second loop takes quadratic time, because,
when L is a list, both length(L) and L[I] take linear time to compute.

The following example accesses each element of a list by using its index:

foreach (I in 1..length(L))
printf("L[%w] = %w\n",I,L[I])

end.

As explained above, this loop takes quadratic time. The following loop is more
efficient:

foreach ({I,E} in zip(1..length(L),L))
printf("L[%w] = %w\n",I,E)

end.

The Picat compiler generates code for iterating over the list of pairs without actually
computing the zipped list. This loop still requires the computation of length(L)
before it starts, but the overall running time is linear. If performance is critical, then
the computation should be defined by using recursion, as follows:

loop_pred([],_I) => true.
loop_pred([E|L],I) =>

printf("L[%w] = %w\n",I,E),
loop_pred(L,I+1).

The original loop is equivalent to the predicate call loop pred(L,1).

1.7 Bibliographical Note

The details of the Picat language can be found in [72]. Picat shares many features
with Prolog, especially B-Prolog [68]. While knowing Prolog is not a prerequi-
site to learning programming in Picat, knowledge about Prolog and its program-
ming techniques is certainly helpful. Many textbooks on Prolog are available (e.g.,
[8, 14, 33, 53]). Most of the problem-solving and programming techniques de-
scribed in these books can be easily adapted to Picat. The book by O’Keefe [42]
describes several advanced programming techniques for Prolog, including exploita-
tion of determinism, tail-recursion, and difference lists.

Several logic programming systems support language extensions, such as func-
tions in Mercury [40] and Ciao [24], and loop constructs in ECLiPSe [49] and B-
Prolog [68]. ECLiPSe requires the declaration of global variables, and B-Prolog
requires the declaration of local variables. In contrast, Picat adopts a simple and
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clean scoping rule for variables, which renders the declaration of global and local
variables unnecessary.

Assignable variables are rarely seen in logic and functional languages. The Picat
compiler introduces a new variable for each assigned variable. This transformation
is employed in building the static single assignment form (SSA) for imperative pro-
grams, which simplifies program analysis and compilation [16].

Some of Picat’s constructs and notations are borrowed from other languages. The
as-pattern is taken from Haskell [26]. The list comprehension, which can be traced
back to SETL [50], was made popular by Haskell. Picat’s dot-notation for chain-
ing function calls is borrowed from object-oriented languages. Several textbooks
on programming languages give a comprehensive comparison of different program-
ming language paradigms (e.g., [51, 52]).

The Picat implementation adopts the virtual machine ATOAM [66], which is
a redesign of the Warren Abstract Machine [63] for fast software emulation. The
extended virtual machine that supports tabling and constraint propagation is detailed
in [68].

1.8 Exercises

1. Write a program that prints a staircase of a given number of steps. For example,
here is the output when the number is 3:

+---+
| |

+---+---+
| | |

+---+---+---+
| | | |
+---+---+---+

2. Write a predicate pascals triangle(N) that prints the first N rows of Pas-
cal’s triangle. Starting with row 0, each row, I, has I + 1 columns, defined
by Triangle[I, J] = I! / (J! * (I - J)!), where ! is shorthand
for factorial. For example, the following shows rows 0 through 3 of Pascal’s tri-
angle:

1
1 1
1 2 1

1 3 3 1

Hint: remember that lists and arrays begin with index 1.
3. The transpose example in Section 1.3.4 is defined in the main predicate, and

transposes a predetermined 2× 3 array into a 3× 2 array. Convert this example
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into a function transpose(Matrix) = Transpose that takes an arbitrary 2-
dimensional array and returns the array’s transpose instead of printing it within
the function.

4. Write a function number of zeroes/1 that returns the number of zeroes that
are in a given list.

5. Write a function all permutations/1 that returns a list of permutations of
a given list. For example, all permutations([1,2,3]) returns:

[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]

6. Modify the quicksort example from Section 1.4.3 so that it uses two function
facts, instead of one function fact and one function.

7. Convert the Fibonacci example from Section 1.4.4 to only use a single rule,
which contains an in-then-else statement.

8. Convert the Fibonacci example from Section 1.4.4 to find the Nth Tribonacci
number. Tribonacci numbers are defined as: t(1) = 1, t(2) = 1, t(3)
= 2, t(N) = t(N-1) + t(N-2) + t(N-3).

9. The following call prints a list of prime numbers from 2 to 100:

print([P : P in 2..100,
foreach (M in 2..P-1) P mod M > 0 end])

Write a program to do the same without using any loops or list comprehensions.
10. Convert the following into tail-recursive functions:

(a) Reverse a list:

rev([]) = [].
rev([H|T]) = rev(T)++[H].

(b) Sum a list:

sm([]) = 0.
sm([H|T]) = sm(T)+H.



Chapter 2
Basic Constraint Modeling

Abstract Given a set of variables, each of which has a domain of possible values,
and a set of constraints that limit the acceptable set of assignments of values to vari-
ables, the goal of a CSP (Constraint Satisfaction Problem) is to find an assignment
of values to the variables that satisfies all of the constraints. Picat provides three
solver modules, including cp (Constraint Programming), sat (Satisfiability), and
mip (Mixed Integer Programming), for modeling and solving CSPs. This chapter
provides an introduction to modeling with constraints, with a primary focus on the
cp module, and a secondary focus on the sat and mip modules.

2.1 Introduction

In Picat, it is possible to use the same model and syntax for three different solver
modules. The cp and sat modules support integer-domain variables, while the
mip module supports both integer-domain and real-domain variables. This chapter
introduces constraint modeling for solving CSPs (Constraint Satisfaction Problems),
in which the possible values of the domains are integers which are often not too
large.

Note: The models that use the sat solver do not work in the Windows version
of Picat, because the Lingeling SAT solver doesn’t compile with MVC. Windows
users can install Cygwin,1 and use the Cygwin version instead.

In general, a constraint model consists of a set of decision variables, each of
which has a specified domain, and a set of constraints, each of which restricts the
possible combinations of values of the involved decision variables. In order to use a
solver, a constraint program must first import the solver module. A constraint pro-
gram normally poses a problem in three steps: (1) generate variables; (2) generate
constraints over the variables; and (3) call solve to invoke the solver in order to

1 https://www.cygwin.com/
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find a valuation for the variables that satisfies the constraints and possibly optimizes
an objective function.

A CSP forms a search space. Solvers have techniques for reducing the search
space, and use strategies to search the space for solutions. For example, CP and SAT
solvers use constraint propagation to prune unfruitful paths in the search space.

A decision variable is also called a domain variable. In Picat, the domain con-
straint X :: D can be used to restrict the domains of variables. A domain variable
is a special kind of a logic variable. General logic variables are assumed to have
the set of all possible ground terms, called the Herbrand base, as their implicit
domains, and operations such as unification can be used to restrict their possible
values. In contrast, domain variables have explicit domains, and a rich set of built-
in constraints, such as arithmetic constraints and the all different constraint,
can be used to restrict their possible values.

The three solver modules in Picat have different strengths and weaknesses. The
cp module tends to be the best choice for problems in which effective global con-
straints and/or problem-specific labeling strategies are available. The satmodule is
often well-suited to problems that can be clearly represented as Boolean expressions
or have efficient CNF (Conjunctive Normal Form) encodings. The mip module is
still the best choice for many kinds of Operations Research problems. It is often
instructive to test all three solvers on the same problem. The common interface that
Picat provides for the solver modules allows seamless switching from one solver to
another.

The programs in this chapter and in the next chapter demonstrate an important
aspect of constraint modeling, namely declarative programming. The ideal is to just
state the problem and let the solver do the job, at least in principle. Logic program-
ming also has this feature, but, arguably, constraint modeling takes this one step (or
several steps) further. Depending on the specific problem at hand, it might still be
necessary to explicitly state certain things, such as for loops and list comprehen-
sions, so please take the notion of “declarativity” with a grain of salt.

2.2 SEND+MORE=MONEY

SEND+MORE=MONEY is one of the most commonly-used examples when introduc-
ing CSPs. The problem is to substitute each letter (SENDMORY) with a distinct digit
in the range of 0..9, such that the equation SEND + MORE = MONEY is sat-
isfied. The following gives a model for the problem. Another model, which uses
carrying in the same way as multiplication by hand, is left as an exercise.

import cp.

main =>
Digits = [S,E,N,D,M,O,R,Y],
Digits :: 0..9,
all_different(Digits),
S #> 0,
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M #> 0,
1000*S + 100*E + 10*N + D

+ 1000*M + 100*O + 10*R + E
#= 10000*M + 1000*O + 100*N + 10*E + Y,
solve(Digits),
println(Digits).

Here is a breakdown of the code:
import cp: This ensures that the CP solver is used. The module name cp can

be changed to sat or mip to use a different solver.
Digits :: 0..9: This defines the domains of the decision variables in the

list Digits, and thus the single variables S, E, N, D, M, O, R, and Y. Recall that the
range 0..9 denotes the list of integers from 0 through 9.

#> and #=: These are arithmetic constraint operators. The disequality con-
straints S #> 0 and M #> 0 ensure that the leading digits of SEND and MORE
must both be greater than 0. The equality constraint ensures that SEND plus MORE
equals MONEY. Note that all of the arithmetic constraint operators begin with #.
This special notation distinguishes between the constraint operators and the normal
relational operators in Picat.

Functions in arithmetic constraints are treated as data constructors, with the ex-
ception of list comprehensions and index notations. In this example, the expressions
on the two sides of the equality constraint are constructed as two terms before being
passed to the predicate that defines #=. Changing #= in the program to = would
result in an evaluation error, since the expressions involve uninstantiated variables,
meaning that the functions cannot be evaluated.

all different(Digits): all different is a global constraint which
states that all of the decision variables in Digits must be distinct. In contrast
to unary or binary arithmetic constraints that have one or two arguments, global
constraints are often defined to work on a larger collection of decision variables,
such as a list. Global constraints are quite unique to CP, compared to other types of
CSP solvers, since the CP solver employs special propagation algorithms for global
constraints in order to reduce the search space. For this reason, global constraints
are often high-level tools-for-thought for modeling problems with CP.

Global constraints can be decomposed into smaller constraints. For example,
all different(L) can be decomposed into a set of inequality constraints that
contains X #!= Y for each pair of distinct elements X and Y in L. However, these
decompositions are often slower than the specially-crafted global constraints.

solve(Digits): The solve predicate finds an assignment of values to the
variables that satisfies all of the accumulated constraints. In general, all of the deci-
sion variables should be passed to solve.
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2.3 Sudoku — Constraint Propagation

This section shows how to model the Sudoku problem, using a small 4×4 Sudoku
instance to demonstrate how constraint propagation changes the domains of the vari-
ables during search. Note that the behavior that is described in this section is specific
to the CP solver. The SAT and MIP solvers do not use domain reduction in the same
manner.

2.3.1 A Sudoku Program

Given an N×N board with some squares already filled with hint values, the objec-
tive of the Sudoku problem is to fill all the empty squares with values in 1..N, such
that each row, each column, and each of the N blocks are filled with distinct values.
Figure 2.1 gives a Picat program for the problem.

The predicate board(Board) gives a problem instance. A board configuration
is given as a matrix (i.e., a 2-dimensional array), where an anonymous variable, in-
dicated by (an underscore), means an unknown, and the numbers are pre-filled hint
values. The predicate sudoku/1 first calculates the dimension N and the block size
N1 of the instance. For the given instance, N = 4 and N1 = 2. The domain constraint
Board :: 1..N changes all the anonymous variables to domain variables with
the domain 1..N. The predicate sudoku/1 then generates an all different
constraint for each row, each column, and each of the N blocks. Finally, it calls the
solver to label the variables with values, meaning that the solver assigns values to
the variables.

Modeling tip: The row and column constraints and the list comprehensions
should now be familiar. The third constraint, the list comprehension for the block
constraints, might take some time to figure out, both to model and to understand.
One tip when modeling this kind of constraint is to first do a “pen and paper ver-
sion” for finding the proper indices and to then model the indices that are needed
for each block.

Note that this problem instance has two solutions. Usually, a Sudoku problem
has a single, unique solution.

2.3.2 Constraint Propagation — Concepts

One of the key operations employed in a CP solver is called constraint propaga-
tion, which actively uses constraints to prune search spaces. Whenever a variable
changes, meaning that the variable has been instantiated or a value has been ex-
cluded from its domain, the domains of all the remaining variables are filtered to
contain only those values that are consistent with the modified variable. Section
2.3.3 provides a concrete example of this domain reduction. There may exist differ-
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import cp.

main =>
board(Board),
sudoku(Board),
println(Board),
nl.

sudoku(Board) =>
N = Board.length, % dimension of Board
N1 = ceiling(sqrt(N)), % block size
Board :: 1..N,

% row constraints
foreach (I in 1..N)

all_different([Board[I,J] : J in 1..N])
end,

% column constraints
foreach (J in 1..N)

all_different([Board[I,J] : I in 1..N])
end,

% block constraints
foreach (I in 1..N1..N, J in 1..N1..N)

all_different([Board[I+K,J+L] :
K in 0..N1-1, L in 0..N1-1])

end,
solve(Board).

board(Board) =>
Board = {{4, _, _, _},

{_, 1, _, _},
{_, _, _, 1},
{_, _, _, 2}}.

Fig. 2.1 A program for Sudoku

ent propagation rules for a constraint, depending on the level of consistency to be
achieved, i.e., on the efforts to be made to reduce domains.

A fixpoint is reached after the propagation phase when no domains can be re-
duced any further. A fixpoint represents a failure if any of the domains becomes
empty, and a fixpoint represents a solution if all of the domains become singletons,
i.e., single-element domains. In general, the propagation phase may not be able to
reach a failure or a solution, in which case the CP solver needs to use another key
operation, called search or labeling, to guess a value or a range of values for a
variable. After a guess, constraint propagation reduces the domains of the related
variables. When a failure is reached, the CP solver backtracks to a previous guess
and tries a different value or values for the variable.
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The performance of a constraint program is greatly affected by search strategies,
which decide the variables to select and the values to guess. In Picat, search strate-
gies can be given to the CP solver as options in solve(Options,Vars). The ff
(first-fail) strategy, which selects the leftmost variable with the smallest domain, is
often used.

2.3.3 Constraint Propagation — Example

Before reading further, try to solve this Sudoku instance by hand, and study the
thinking used to reach the different values. For instance, one may think, “since this
is the only possible value in this cell, the cell must be that value.” One might also
think, “the values in these rows and columns, when taken together, mean that this
cell must have that value.” Reasoning like this is a way of reducing the domains of
the different variables, as mentioned in Section 2.3.2.

For example, the following shows how constraint propagation changes the do-
mains of the variables after each loop statement in the Sudoku program. Initially,
after Board :: 1..N, all of the domains are either a hint value or the full do-
main (1..4).

4 1..4 1..4 1..4
1..4 1 1..4 1..4
1..4 1..4 1..4 1
1..4 1..4 1..4 2

After the loop that posts the row constraints, the domains change to the follow-
ing:

4 1..3 1..3 1..3
2..4 1 2..4 2..4
2..4 2..4 2..4 1

1,3,4 1,3,4 1,3,4 2

Since the hint value at cell [1,1] is 4, the all different constraint for the first
row excludes 4 from the domains at cells [1,2], [1,3], and [1,4]. The domains in the
other rows are changed in a similar fashion.

After the loop that posts the column constraints, the domains change to the fol-
lowing:

4 2 1 3
2,3 1 2,3 4
2,3 3,4 2..4 1
1,3 3,4 3,4 2

The hint value at cell [3,4] is 1, and the value at cell [4,4] is 2. After the column
constraint for column 4 is posted, the domain at cell [1,4] changes to 3, and the
domain at cell [2,4] changes to 4. After the domain at cell [1,4] changes to 3, the
row constraint for the first row is activated to exclude 3 from the domains at cells
[1,2] and [1,3]. These changes will trigger the other constraints to reduce the related
domains before a fixpoint is reached.
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After the loop that posts the block constraints, the domains change to the follow-
ing:

4 2 1 3
3 1 2 4
2 3,4 3,4 1
1 3,4 3,4 2

The constraint for the upper-left block removes 2 from the domain at cell [2,1], the
constraint for the upper-right block removes 3 from the domain at cell [2,3], and the
constraint for the lower-right block removes 1 from the domain at cell [3,3]. These
changes will trigger the row and column constraints to further reduce the related
domains before a fixpoint is reached.

When solve(Board) is executed, there are only four uninstantiated variables.
After guessing 3 for the domain at cell [3,2], the constraints are triggered to remove
3 from the domains at cell [3,3] and cell [4,2]. After these changes, 4 is removed
from the domain at cell [4,3]. For this instance, a single guess is sufficient to find a
solution, meaning that backtracking is not needed. Note that this behavior is more
of an exception; most interesting problems normally require backtracking.

2.4 Minesweeper — Using SAT

The Minesweeper problem in this context is not the full GUI-based program that
is normally associated with the name “Minesweeper”. Instead, it is a simplified
problem, where the goal is to identify the positions of all the mines in a given matrix,
with hints that state how many mines there are in the neighboring cells, including
diagonal neighbors. A cell in the middle of the matrix has eight neighbors, a cell in
the corner has three neighbors, and an edge cell has five neighbors.

Here is a problem instance:
. . 2 . 3 .
2 . . . . .
. . 2 4 . 3
1 . 3 4 . .
. . . . . 3
. 3 . 3 . .

For this instance, the third cell in the first row has the value 2, which indicates that
it has two adjacent mines. The cells marked with “.” are unknowns, meaning that
the cell may or may not have a mine. One can also observe that if there is a number
in a cell, then the cell cannot contain a mine.

Figure 2.2 gives a program for the problem. The predicate problem/1 specifies
an instance matrix in which an integer indicates a hint value and an underscore in-
dicates an unknown. For an instance matrix, let NRows be the number of rows and
NCols be the number of columns. The function new array(NRows,NCols)
creates a matrix of the same dimension as the instance matrix. The domain con-
straint Mines :: 0..1 restricts every variable to be Boolean: the value 0 in-
dicates that the cell does not contain a mine, and the value 1 indicates that the
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import sat.

main =>
% define the problem instance
problem(Matrix),
NRows = Matrix.length,
NCols = Matrix[1].length,

% decision variables: where are the mines?
Mines = new_array(NRows,NCols),
Mines :: 0..1,

foreach (I in 1..NRows, J in 1..NCols)

% only check those cells that have hints
if ground(Matrix[I,J]) then

% The number of neighboring mines must equal Matrix[I,J].
Matrix[I,J] #= sum([Mines[I+A,J+B] :

A in -1..1, B in -1..1,
I+A > 0, J+B > 0,
I+A =< NRows, J+B =< NCols]),

% If there is a hint in a cell, then it cannot be a mine.
Mines[I,J] #= 0

end
end,
solve(Mines),
println(Mines).

problem(P) =>
P = {{_,_,2,_,3,_},

{2,_,_,_,_,_},
{_,_,2,4,_,3},
{1,_,3,4,_,_},
{_,_,_,_,_,3},
{_,3,_,3,_,_}}.

Fig. 2.2 A program for Minesweeper

cell contains a mine. The loop generates constraints to ensure that all of the hint
values are respected. For each cell, let I be its row number and J be its column
number. If Matrix[I,J] is ground, meaning that the cell has a hint value, then
Mines[I,J] must be 0, and the sum of the neighboring cells in the matrix Mines
must be equal to the hint value. Note how this constraint is expressed nicely us-
ing a list comprehension. For a cell whose position is [I,J], a neighboring cell
must have the position [I+A,J+B], where A and B are row and column deltas in
-1..1. In the list comprehension, conditions are tested to ensure that I+A is a valid
row number and J+B is a valid column number.
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This program uses the satmodule. For large instances of the Minesweeper prob-
lem, the sat module tends to be significantly faster than other solver modules. In
general, SAT solvers tends to outperform CP solvers on 0/1 integer programming
modules. SAT solvers perform better because the search strategies that CP solvers
use for this type of problem are limited, and because SAT solvers are much more
intelligent than CP solvers in pruning unfruitful paths from the search space.

The authors did an experiment of generating 20 N×N random matrices with N
random hint values in the range of 1 to 8, including both solvable and unsolvable
Minesweeper instances. The timings for selected N with at least one solvable in-
stance are shown in Table 2.1. This suggests that, for this setup, the CP solver is
faster than the SAT solver for N ≤ 430, and that, for larger N, the SAT solver is
significantly faster. Note: The exact times are for Picat version 1.3, and might differ
in later versions.

Table 2.1 Minesweeper: CP vs SAT

N solutions CP (s) SAT (s) Winner
50 1 0.016 0.072 CP

107 1 0.068 0.208 CP
202 1 0.284 0.548 CP
430 1 1.96 2.19 CP
440 2 3.6 3.08 SAT
450 5 10.1 6.46 SAT
500 3 7.5 5.03 SAT
601 1 4.99 3.65 SAT

1000 1 21.69 9.47 SAT
1500 3 804.6 61.27 SAT
1601 1 143.25 40.79 SAT

2.5 Diet — Mathematical Modeling with the mip Module

This section considers the Diet problem, a popular linear programming problem in
Operations Research. Given a set of foods, each of which has given nutrient values,
a cost per serving, and a minimum limit for each nutrient, the objective of the diet
problem is to select the number of servings of each food to consume so as to mini-
mize the cost of the food while meeting the nutritional constraints. Table 2.2 gives
an example. In this example, a diet is required to contain at least 500 calories, 6
ounces of chocolate, 10 ounces of sugar, and 8 ounces of fat.

Figure 2.3 gives a program for the example problem. The predicate

data(Prices,Limits,Nutrition}

defines a problem instance, where Prices is an array of prices of the foods,
Limits is an array of the minimum numbers of servings for the different nutri-
ents, and Nutrition is a matrix that gives the nutrient values of each type of
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Table 2.2 An example of the Diet problem

Type of Food Calories Chocolate (oz.) Sugar (oz.) Fat (oz.) Price (cents)
Chocolate Cake (1 slice) 400 3 2 2 50
Chocolate ice cream (1 scoop) 200 2 2 4 20
Cola (1 bottle) 150 0 4 1 30
Pineapple cheesecake (1 piece) 500 0 4 5 80
Limits 500 6 10 8 –

food. The array Xs is a vector of decision variables. For each food type numbered
I, Xs[I] denotes the number of servings of the food. The maximum number of
servings is set to 10.

This program uses two user-defined constraints, named scalar product/3
and scalar product/4, to handle the nutritional constraints. Let A be a vector
of nutrient values. The scalar product(A,Xs,Product) constraint ensures
that Product is the total value of the nutrient. The scalar product/4 con-
straints ensure that the total value of each nutrient is no less than the required limit.

The call scalar product(Prices,Xs,XSum) creates a new decision vari-
able, XSum, which is equal to the total price of the foods. This is an optimization
problem; the option in solve($[min(XSum)],Xs) means that XSum is mini-
mized.

The program can be shortened by using a loop. The main predicate can be
rewritten into the following:

main =>
data(Prices,Limits,Nutrients),
Len = length(Prices),
Xs = new_array(Len),
Xs :: 0..10,
foreach (I in 1..Nutrients.length)

scalar_product(Nutrients[I],Xs,#>=,Limits[I])
end,
scalar_product(Prices,Xs,XSum),
solve($[min(XSum)],Xs),
writeln(Xs).

This shortened program is more general than the previous version, and works on an
input table of any size.

Modeling tip: For beginners, it might be difficult to start by implementing a very
general model. Therefore, it is often beneficial to first write a small “explicit” model,
which can then be generalized. Also, when writing a new model, it is recommended
to start with a small problem instance, where the solutions are known. This has the
advantages of being faster to solve, and that one can directly check that the solver
has given a correct solution.

In this example, when modeling the diet problem, all three of the constraint mod-
ules quickly solve the problem. The next section gives an example for which mip
is significantly faster than sat and cp.
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import mip.

main =>
data(Prices,Limits,{Calories,Chocolate,Sugar,Fat}),
Len = length(Prices),
Xs = new_array(Len),
Xs :: 0..10,

scalar_product(Calories,Xs, #>=,Limits[1]), % 500
scalar_product(Chocolate,Xs,#>=,Limits[2]), % 6
scalar_product(Sugar,Xs, #>=,Limits[3]), % 10
scalar_product(Fat,Xs, #>=,Limits[4]), % 8
scalar_product(Prices,Xs,XSum), % to minimize
solve($[min(XSum)],Xs),
writeln(Xs).

% plain scalar product
scalar_product(A,Xs,Product) =>

Product #= sum([A[I]*Xs[I] : I in 1..A.length]).

scalar_product(A,Xs,Rel,Product) =>
scalar_product(A,Xs,P),
call(Rel,P,Product).

data(Prices,Limits,Nutrition) =>
% prices in cents for each product
Prices = {50,20,30,80},
% required amount for each nutrition type
Limits = {500,6,10,8},

% nutrition for each product
Nutrition =

{{400,200,150,500}, % calories
{ 3, 2, 0, 0}, % chocolate
{ 2, 2, 4, 4}, % sugar
{ 2, 4, 1, 5}}. % fat

Fig. 2.3 A program for the Diet problem

2.6 The Coins Grid Problem: Comparing MIP with CP/SAT

As indicated earlier, the same Picat model can often be used for all three solver
modules. This section studies the Coins Grid problem, an example on which the
MIP solver is much faster than the other two solvers.

The problem statement is from Tony Hürlimann’s “A coin puzzle: SVOR-contest
2007”,2 and is described below:

2 Taken with permission from
www.svor.ch/competitions/competition2007/AsroContestSolution.pdf.
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In a quadratic grid (or a larger chessboard) with 31× 31 cells, one should place coins in
such a way that the following conditions are fulfilled:

1. In each row exactly 14 coins must be placed.

2. In each column exactly 14 coins must be placed.

3. The sum of the quadratic horizontal distance from the main diagonal of all cells con-
taining a coin must be as small as possible.

4. In each cell at most one coin can be placed.

Figure 2.4 gives a program for the problem. The grid is represented as a matrix
with 0/1 entries, with 0 indicating that a coin is not placed in the cell, and 1 in-
dicating that a coin is placed in the cell. The row and column constraints are easy
to model using sum. For a cell in row I and column J, the “quadratic horizontal
distance” of the cell from the main diagonal is abs(I-J)*abs(I-J). Sum is the
total of the distances between the coins and the grid’s main diagonal. The objective
of this problem is to minimize Sum.

import mip.

main =>
N = 31,
C = 14,
time2(coins(N, C)).

coins(N,C) =>
X = new_array(N,N),
X :: 0..1,

foreach (I in 1..N)
C #= sum([X[I,J] : J in 1..N]), % rows
C #= sum([X[J,I] : J in 1..N]) % columns

end,

% quadratic horizontal distance
Sum #= sum([(X[I,J] * abs(I-J) * abs(I-J)) :

I in 1..N, J in 1..N]),
solve($[min(Sum)],X),
println(sum=Sum).

Fig. 2.4 A program for the Coins-Grid problem

Table 2.3 compares the three solvers using the same model on different grid sizes
(N) and different numbers of coins (C). The MIP solver solves the original problem
(N=31, C=14) in a few milliseconds, whereas both CP and SAT failed to solve
this problem in reasonable times (several hours). When compared to the MIP solver,
both the CP and SAT solvers are very slow, even for small values of N and C.

The reason why the MIP solver is much faster is probably that all of the con-
straints in the model are linear, and MIP solvers are often very fast for linear models.
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Table 2.3 Coins grid problem (Picat 1.3)

N C Sum CP (s) SAT (s) MIP (s)
8 4 80 2.27 3.48 0.0
8 5 198 72.15 3.76 0.0
9 4 90 12.61 6.48 0.0

10 4 98 97.39 7.51 0.0
31 14 13668 – – 0.016

Modeling tip: When working with harder optimization problems, it is often use-
ful to see the current value of the objective variable during the solving phase. In
Picat, the option report(Call) can be used for this purpose. For example,

solve($[min(Sum),report(printf("Sum: %w\n", Sum))],Vars),

tells Picat to print out “Sum: ...” whenever it finds a new and better value of
Sum.

2.7 N-Queens — Different Modeling Approaches

The N-queens problem is another standard CSP problem. The objective is to place
N queens on an N×N chessboard, such that no queen can capture any other queen.
Queens on a chessboard can go in three directions: horizontally, vertically, and di-
agonally. There are several ways of modeling this problem. This section presents
three models.

Here is the first, “naive”, model:

import cp.

queens1(N, Q) =>
Q = new_list(N),
Q :: 1..N,
foreach (I in 1..N, J in 1..N, I < J)

Q[I] #!= Q[J], % columns
Q[I] - I #!= Q[J] - J, % diagonal 1
Q[I] + I #!= Q[J] + J % diagonal 2

end,
solve([ff],Q).

This model uses a list Q of N variables, representing the chessboard’s N rows,
where each variable’s value is a column number for each row. For all different pairs
of I and J (where I < J), this model ensures the following:

1. The columns are distinct: Q[I] #!= Q[J].
2. No two queens are placed the same diagonal: Q[I] - I #!= Q[J] - J,

and Q[I] + I #!= Q[J] + J.

The second model uses the global constraint all different/1 for handling
the three principal constraints:
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import cp.

queens2(N, Q) =>
Q = new_list(N),
Q :: 1..N,
all_different(Q),
all_different([$Q[I]-I : I in 1..N]),
all_different([$Q[I]+I : I in 1..N]),
solve([ff],Q).

As shown in earlier examples, the arguments of the latter two all different
constraints must be “escaped” by $ in order for them to be treated as terms rather
than as function calls.

Recall that the option [ff] specifies the first-fail labeling strategy. More about
labeling strategies will discussed in the next chapter.

A third model is a 0/1 integer programming model that uses an N×N array. For
each cell, a 0/1 domain variable is used, with 0 indicating an empty square, and 1
indicating a queen. Figure 2.5 shows a program based on this model.

import sat.

queens3(N, Q) =>
Q = new_array(N,N),
Q :: 0..1,
foreach (I in 1..N)

% 1 in each row
sum([Q[I,J] : J in 1..N]) #= 1

end,
foreach (J in 1..N)

% 1 in each column
sum([Q[I,J] : I in 1..N]) #= 1

end,
foreach (K in 1-N..N-1)

% at most 1 in each \ diagonal
sum([Q[I,J] : I in 1..N, J in 1..N, I-J==K]) #=< 1

end,
foreach (K in 2..2*N)
% at most 1 in each / diagonal
sum([Q[I,J] : I in 1..N, J in 1..N, I+J==K]) #=< 1

end,
solve(Q).

Fig. 2.5 A 0/1 integer programming model for N-queens

The first two foreach loops ensure that there is exactly one queen in each row and
each column. The two latter loops ensure the diagonality constraints by restricting
each possible diagonal in the grid to contain at most one queen. Note that some
diagonals might not contain any queens.

The timings of the three N-queens versions for the three constraint solvers, shown
in Tables 2.4, 2.5, and 2.6, indicate some interesting differences. For the CP solver,
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the all different version is significantly faster than both the SAT and MIP
solvers. For the SAT solver, the “naive” version is faster than the all different
version, which perhaps indicates that, for this problem, the translation of the con-
straint all different to the SAT solver’s representation is not as good as
the implemented “naive” version. Note that the MIP solver does not support the
all different constraint. For the third model, the SAT solver is by far the
fastest among the three solvers. Also, this is the model where the MIP solver has
its fastest times.

Comparing all the models and solvers, the fastest combination is the CP solver
running the all different model.

The timings are for Picat version 1.3 using Linux Ubuntu 12.04, 64-bit, Intel i7-
930 CPU (2.8 GHz), 12 Gb RAM. Later versions might give different timings (and
even different relations between the solvers’ times).

As indicated in this chapter, testing different approaches and solvers can give
very different behaviors in terms of solving times. Sometimes, this kind of experi-
mentation is not really needed, since the first variant is “good enough”. Neverthe-
less, trying different variants is a good way of learning constraint modeling, and can
also be fun.

Table 2.4 N-queens: “Naive version”, using solve($[ff],Q) for CP

N CP (s) SAT (s) MIP (s)
8 0.00 0.08 0.35

10 0.00 0.12 0.50
12 0.00 0.16 5.17
20 0.00 0.80 1557.3
50 0.00 8.74 –

100 0.02 48.10 –
200 4.86 105.61 –
400 0.56 – –

1000 5.02 – –

Table 2.5 N-queens: all different version, using solve($[ff],Q) for CP

N CP (s) SAT (s) MIP (s)
8 0.00 0.09 –

10 0.00 0.14 –
12 0.00 0.22 –
20 0.00 0.92 –
50 0.004 8.33 –

100 0.01 473.1 –
200 2.36 782.88 –
400 0.28 – –

1000 1.8 – –
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Table 2.6 N-queens: 0/1 integer programming version, using solve($[inout],Q) for CP

N CP (s) SAT (s) MIP (s)
8 0.0 0.0 0.0

10 0.0 0.0 0.0
12 0.0 0.0 0.02
20 0.0 0.05 0.27
50 0.05 0.93 12.38

100 10.17 1.65 704.7
200 >60 min 7.20 –
400 – 48.41 –

1000 – 704.11 –

2.8 Bibliographical Note

This chapter and Chapter 3 cover a few techniques and applications of constraint
programming. A more in-depth discussion of constraint programming, including
its history, the algorithms that constraint solvers use, and further techniques and
applications of constraint programming, is included in [45].

The literature on constraint programming is abundant, including tutorials [3, 7],
surveys [10, 28, 44]) and textbooks ([18, 37, 57, 58]). Picat’s CP solver is inherited
from B-Prolog [67, 68].

The Diet problem is just one type of Operations Research problem. [54] and [65]
contain examples of how Operations Research can be used to manage businesses.

The description of the Coins Grid problem is taken from [27].

2.9 Exercises

1. Implement the carry version of the SEND + MORE = MONEY problem from
Section 2.2. In the carry version, whenever the the sum of the column is greater
than ten, the leftmost digit of the sum is explicitly added to the next column on
the left. For example,

C4 C3 C2 C1
S E N D

+ M O R E
---------------
= M O N E Y

The four variables C1, C2, C3, and C4 are the carries in the addition.
Compare the performance of the two models.

2. Implement the DONALD + GERALD = ROBERT problem using both the non-
carry approach and the carry approach. Compare the performances.

3. Modify the Sudoku program from Section 2.3.1 to solve the following 9× 9
Sudoku instance:

_ _ 2 _ _ 5 _ 7 9
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1 _ 5 _ _ 3 _ _ _
_ _ _ _ _ _ 6 _ _

_ 1 _ 4 _ _ 9 _ _
_ 9 _ _ _ _ _ 8 _
_ _ 4 _ _ 9 _ 1 _

_ _ 9 _ _ _ _ _ _
_ _ _ 1 _ _ 3 _ 6
6 8 _ 3 _ _ 4 _ _

Ensure that it has only one solution.
4. The output of the minesweeper model in Section 2.4 is just a list of 0s and 1s.

Add a predicate to print the output in the following format:
The mine cells are represented with X, and the non-mine cells are shown as .
Check that the minesweeper solution complies with the given hints.

5. Write a constraint model for the Zebra problem (sometimes attributed to Lewis
Carrol):

Five men with different nationalities live in the first five houses of a street. They practice
five distinct professions, and each of them has a favorite animal and a favorite drink, all
of them different. The five houses are painted in different colors.
The Englishman lives in a red house.
The Spaniard owns a dog.
The Japanese is a painter.
The Italian drinks tea.
The Norwegian lives in the first house on the left.
The owner of the green house drinks coffee.
The green house is on the right of the white one.
The sculptor breeds snails.
The diplomat lives in the yellow house.
Milk is drunk in the middle house.
The Norwegian’s house is next to the blue one.
The violinist drinks fruit juice.
The fox is in a house next to that of the doctor.
The horse is in a house next to that of the diplomat.

Who owns a zebra, and who drinks water?

Ensure that the model has a unique solution.
6. Map coloring:

(a) The map coloring problem is to color the countries of a map, ensuring that
each country is given a different color than the countries that are its neighbors.
Below are some European countries and their neighbors. Implement a map col-
oring model for these countries.

Countries: Belgium, Denmark, France, Germany, Luxembourg, Netherlands

Neighbors:

• Belgium: France, Germany, Luxembourg, Netherlands

• Denmark: Germany
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• France: Belgium, Germany, Luxembourg

• Germany: Belgium, Denmark, France, Netherlands, Luxembourg

• Luxembourg: Belgium, France, Germany

• Netherlands: Belgium, Germany

Print all the possible solutions.
Hint 1: The colors themselves are not very important, and can be represented as
integers.
Hint 2: There are many solutions which are the same, except that the numbers
are a permutation of another solution. To remove some of these symmetries one
can assume, for example, that Belgium has the color 1.
(b) Find a map of Europe and implement a map coloring model of all the Euro-
pean countries.

7. Test the models in this chapter with the cp and sat constraint modules and
compare the results.

8. Solve the instance of the Kakuro puzzle that is depicted in Figure 2.6. The objec-
tive of the Kakuro puzzle is to fill in the white squares with digits between 1 and
9 such that each set of horizontal digits adds up to the value on its left, and each
set of vertical digits adds up to the value above it. No digit can be used more than
once in each sum. Note: when one square contains two pre-filled numbers, the
top number applies to the horizontal sum, and the bottom number applies to the
vertical sum.3

Fig. 2.6 Sample Kakuro puzzle

3 This is a relatively small problem instance of Kakuro. For larger and more difficult instances, see
the website Kakuro Conquest (http://www.kakuroconquest.com/).



Chapter 3
Advanced Constraint Modeling

Abstract This chapter describes more advanced techniques of constraint model-
ing in Picat, as well as some tips about performance and debugging. The Langford
number problem shows the use of the global constraint element and the concepts
of reversibility and symmetry breaking. Reification, or reasoning about constraints,
is exemplified with a decomposition of all different except 0, as well as
the Who Killed Agatha problem. A separate section describes the importance of
declaring domains to be as small as possible (but not smaller). This is followed
by a section about search strategies, in which the magic squares problem is used
for systematically testing many search strategies. The cumulative constraint is
used for scheduling furniture moving, including precedences. Then, the magic se-
quences problem shows how to use the global constraint global cardinality,
and explains that the order of constraints in a model might matter. The circuit
constraint is used for modeling the knight’s tour problem. The regular constraint,
defined by a Deterministic Finite Automaton, is used in two models, first for a de-
composition of the global contiguity constraint, and then for modeling a
nurse rostering problem. This is followed by an alternative approach of the nurse
rostering problem that uses the table in constraint. The chapter ends with some
general tips about how to debug constraint models, when the models don’t give a
solution, or when the solution is not correct.

3.1 Advanced Constraint Modeling

Chapter 2 described basic modeling with the three constraint modules: cp, sat,
and mip. This chapter describes more advanced modeling with a focus on global
constraints and the cp and sat modules.

This chapter also describes some of the built-in global constraints, including
all different, element, lex lt, lex le, all different except 0,
cumulative, global cardinality, scalar product, circuit,
regular, table in, and table not in. See the Picat Guide for a complete

49
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list of the global constraints that Picat provides. For a more comprehensive list of
global constraints, see The Global Constraint Catalog.1 For a collection of constraint
satisfaction problems, some of which are described in this chapter, see CSPLib.2

Note: The mip module in the current implementation of Picat (version 1.3) does
not support the global constraints that are described in this chapter.

Note: Some of the models using sat solver do not work in the Windows version
of Picat, because the Lingeling SAT solver doesn’t compile with MVC. Windows
users can install Cygwin, and use the Cygwin version instead.

3.2 The element Constraint and Langford’s Number Problem

This section introduces some of the important concepts of constraint modeling:

• the element constraint
• reversibility
• symmetry breaking

The element constraint3 is a very important and commonly-used constraint. In
some modeling languages, such as MiniZinc and OPL, it is denoted as V = L[I],
where L is a list of decision variables or integers, and each of I and V can either be
a decision variable or an integer. The element constraint holds if V is the value
of the Ith position in the list L. However, Picat does not support the V #= L[I]
syntax when the index, I, is a decision variable. Instead, the constraint must be
stated as element(I,L,V), and should be interpreted as “V is the value of L at
index I”.

If I and V are both decision variables, and if L is a list of decision variables or
integers, then the constraint can be used in two different cases:

• It can be used for the “normal” index operation that is found in many program-
ming languages: Given the value of I, which is the index in L, calculate the value
of V.

• It can also be used for the reverse operation: Given the value of V (the result
value), figure out what index I must be.

These multiple ways of using a constraint are an example of reversibility (also
called bi-directionality), where certain parameters of the constraint can either be
used as input or as output, depending on the circumstances. In the first case, I and
L are inputs, and V is the output. In the second case, L and V are inputs, and I is the
output.

1 http://sofdem.github.io/gccat/
2 http://csplib.org/
3 http://sofdem.github.io/gccat/gccat/Celement.html
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3.2.1 Langford’s Number Problem

The usefulness of the element constraint can be shown by the Langford number
problem.4

Consider two sets of the numbers from 1 to 4. The problem is to arrange the eight numbers
in the two sets into a single sequence in which the two 1’s appear one number apart, the
two 2’s appear two numbers apart, the two 3’s appear three numbers apart, and the two 4’s
appear four numbers apart.

For example, for k=4, a solution would be 41312432.
This section contains two models of the Langford number problem. The first

model, shown in Figure 3.1, uses a single list, Seq, with the domain 1..K, and
two element constraints. The loop checks that for each number 1..K, the two
indices at which I is placed in Seq, indices J1 and J2, are I + 1 positions apart.
In other words, the loop ensures that there are exactly I numbers between the two
occurrences of I in Seq.

import cp.
main =>

langford(4, Seq),
println(Seq).

langford(K, Seq) =>
K2 = 2*K,
Seq = new_list(K2),
Seq :: 1..K,
foreach(I in 1..K)

element(J1,Seq,I),
element(J2,Seq,I),
J2 #= J1+I+1

end,
solve(Seq).

Fig. 3.1 Langford problem, first approach

The output for K=4 is this solution:

[4,1,3,1,2,4,3,2]

The advantages of this model are that it is small, and that it is straightforward to
implement. However, the drawback is that it is slow when given larger values of K.
For example, for as small a size as K= 8, it takes some seconds to solve, and K= 12
takes minutes.

Another approach is to add another viewpoint in the model: a second list that also
contains the positions of the numbers. This approach is shown in Figure 3.2.

4 Taken with permission from http://www.csplib.org/Problems/prob024/.
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import cp.

main =>
langford(4, Solution, Position),
println(solution=Solution),
println(position=Position).

langford(K, Solution, Position) =>
K2 = 2*K,
Position = new_list(K2), Position :: 1..K2,
Solution = new_list(K2), Solution :: 1..K,

all_distinct(Position),

foreach (I in 1..K)
Position[K+I] #= Position[I] + I+1,
element(Position[I],Solution,I),
element(Position[K+I],Solution,I)

end,

% symmetry breaking:
Solution[1] #< Solution[K2],

Vars = Solution ++ Position,
solve(Vars).

Fig. 3.2 Langford problem, second approach

The two lists Solution and Position are of length 2*K in order to contain
the double set of the integers 1..K, where the two occurrences of the digit I should
be placed I places apart. Position contains the position of the integers, where
the same integer is placed in positions I and K+I. For example, for K=4 the po-
sition of the number 3 will be stored in Position[3] and Position[4+3].
For K=4, one solution is Solution=41312432, which means that Position is
25314876.

The two element constraints convert the positions in the list Position to the
solution list, Solution, by ensuring that the index of the number I (i.e., the index
that is stored in Position[I]) will be the number I.

The advantage of this second approach is that the “viewpoint” of the Solution
list makes it possible to add an all different constraint, which speeds up the
model considerably. Comparing with the first model, an input of K= 12 is solved in
0.004 s, and all K up to 32 are solved in well under 1 s.

A short comment on symmetry breaking: For K= 4 there are two solutions:

solution:[4,1,3,1,2,4,3,2]
position:[2,5,3,1,4,8,7,6]

and

solution:[2,3,4,2,1,3,1,4]
position:[5,1,2,3,7,4,6,8]
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These two solutions are the same, except that one is the reverse of the other.
When distinct solutions are required, removing these kind of symmetries are done
with various types of symmetry breaking constraints.

One way to break the symmetry in this model is to ensure that the first element
in Solution is less than the last element:

Solution[1] #< Solution[K2]
Adding this symmetry breaking constraint will only give the second solution.
Using symmetry breaking can make a model much faster, since it removes many

possible solutions by pruning branches in the search tree. There are other global
constraints designed to be used for symmetry breaking. Picat supports the two con-
straints lex lt(L1,L2) and lex le(L1,L2) for ensuring that the list L1 is
either lexicographically less than (lex lt) or less than or equal to (lex le) the
list L2. Another common symmetry breaking constraint is lex2(Matrix), which
ensures that all rows and columns in a 2-dimensional matrix are ordered lexico-
graphically. Note that lex2 is not a Picat built-in.

3.3 Reification

Reification is an invaluable feature of constraint modeling, and makes it possible to
reason about constraints by stating logical constraints, and by combining them with
logical operators.

Table 3.1 defines the special operators that can be used when working with reifi-
cations.

Table 3.1 Reification operators in Picat

Operation Operator Definition
and C1 #/\ C2 Constraint C1 and constraint C2 must both be true.
or C1 #\/ C2 Either constraint C1 or constraint C2 (or both) must be true.
inequality C1 #!= C2 If constraint C1 is true, then constraint C2 is false.

If constraint C1 is false, then constraint C2 is true.
implication C1 #=> C2 If constraint C1 is true, then C2 must be true.
equivalence C1 #<=> C2 Both constraints C1 and C2 must be true,

or both constraints C1 and C2 must be false.
xor C1 #ˆ C2 Either constraint C1 or constraint C2, but not both, must be true.
not #˜ C1 Constraint C1 is not true.
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3.3.1 Example of Reification: all different except 0

The global constraint all different except 0(Xs)5 is a useful example of
reification. This constraint ensures that all of the non-zero values in the list of de-
cision variables Xs must be different. In other words, the number 0 can appear
multiple times in list Xs, but other values can appear at most once.

Even though Picat supports this constraint, it is instructive to see how it can be
defined using reifications.

import cp.

main =>
N = 4,
Xs = new_list(N),
Xs :: 0..N,
alldifferent_except_0(Xs),
solve(Xs),
println(Xs).

alldifferent_except_0(Xs) =>
foreach (I in 2..Xs.length, J in 1..I-1)

(Xs[I] #!= 0 #/\ Xs[J] #!= 0) #=> (Xs[I] #!= Xs[J])
end.

Fig. 3.3 All different except 0

The constraint loops through every pair of elements in Xs (X[I] and X[J], I>
J), and uses implication to ensure that when both Xs[I] and Xs[J] are different
from 0, they are distinct.

This constraint is useful when the list can contain “dummy” values (coded as the
value 0) which should be ignored when ensuring the overall distinctiveness of the
elements in a list. Note that the domain of the list of decision variables must include
the value 0.

3.3.2 Reification — Who Killed Agatha

A more elaborate use of reification is used in the Who Killed Agatha problem,
which is also called “The Dreadsbury Mansion Murdery Mystery.” This is a standard
benchmark for theorem proving. It is stated like this:

Someone in Dreadsbury Mansion killed Aunt Agatha. Agatha, the butler, and Charles live
in Dreadsbury Mansion, and are the only ones to live there. A killer always hates, and is
no richer than his victim. Charles hates nobody that Agatha hates. Agatha hates everybody

5 http://sofdem.github.io/gccat/gccat/Calldifferent except 0.html
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except the butler. The butler hates everyone not richer than Aunt Agatha. The butler hates
everyone whom Agatha hates. Nobody hates everyone. Who killed Agatha?

The Picat model below shows some examples of reifications, but also demon-
strates caveats when modeling a problem: Sometimes, modeling a problem involves
more than just translating constraints from a problem description. One also has to
define the underlying concepts. In this example, the underlying concepts are the con-
cepts of “Hate” and “Richer”. This example also shows that sometimes the problem
can be underdefined: This model yields eight solutions, all pointing to the same
killer, since there are some insufficiently defined relations regarding “Hate” and
“Richer” that cannot be decided from the problem description.

This model has two central concepts: “Hate” and “Richer”. They are defined by
two 3×3 matrices of Boolean decision variables. Reification is used to define both
the principle of the concepts and the concrete relations from the problem decription.

“A killer always hates, and is no richer than his victim.”
One way of stating this constraint is to use a foreach loop which iterates through

each person and states that “if this person is the killer, then he/she hates Agatha and
he/she is not richer than Agatha”:

foreach (I in 1..N)
Killer #= I #=> Hates[I, Agatha] #= 1,
Killer #= I #=> Richer[I, Agatha] #= 0

end,

The next step is to define the concept of “Richer” so the solver can use the given
hints to identify the killer. In this model, to be richer means that:

• nobody is richer than him-/herself
• if person P1 is richer than person P2, then P2 cannot be richer than P1

The second criterion uses a reification constraint (an equivalence):
% if I is richer than J, then J is not richer than I
foreach (I in 1..N, J in 1..N, I != J)

Richer[I,J] #= 1 #<=> Richer[J,I] #= 0
end,

Similarly, the following requirements also use reification constraints:

• Charles hates nobody that Agatha hates.
• The butler hates everyone not richer than Aunt Agatha.
• The butler hates everyone whom Agatha hates.

The output of the model is a list of eight 1’s, stating that, in all eight possible
solutions, Agatha, who is labeled as person 1, is the killer.

3.4 Domains: As Small as Possible (but Not Smaller)

The underlying algorithms of the constraints in the cp module are based on the
reduction of the domains of the decision variables, either by adjusting the lower and
upper bounds, or by deleting values from the domain.



56 3 Advanced Constraint Modeling

import cp.

main =>
L = find_all(Killer, who_killed_agatha(Killer)),
println(killer=L).

who_killed_agatha(Killer) =>
% Agatha, the butler, and Charles live in Dreadsbury Mansion,
% and are the only ones to live there.
N = 3,
Agatha = 1,
Butler = 2,
Charles = 3,

% The killer is one of the three.
Killer :: [Agatha,Butler,Charles],
% Define the Hates and Richer Boolean matrices
Hates = new_array(N,N),
Hates :: 0..1,
Richer = new_array(N,N),
Richer :: 0..1,

% A killer always hates, and is no richer than his victim.
foreach (I in 1..N)

Killer #= I #=> Hates[I, Agatha] #= 1,
Killer #= I #=> Richer[I, Agatha] #= 0

end,
% Define the concept of "richer":
% nobody is richer than him-/herself
foreach (I in 1..N)

Richer[I,I] #= 0
end,
% if I is richer than J, then J is not richer than I
foreach (I in 1..N, J in 1..N, I != J)

Richer[I,J] #= 1 #<=> Richer[J,I] #= 0
end,
% Charles hates nobody that Agatha hates.
foreach (I in 1..N)

Hates[Agatha, I] #= 1 #=> Hates[Charles, I] #= 0
end,
% Agatha hates everybody except the butler.
Hates[Agatha, Butler] #= 0,
Hates[Agatha, Charles] #= 1,
Hates[Agatha, Agatha] #= 1,
% The butler hates everyone not richer than Aunt Agatha.
foreach (I in 1 ..N)

Richer[I, Agatha] #= 0 #=> Hates[Butler, I] #= 1
end,
% The butler hates everyone whom Agatha hates.
foreach (I in 1..N)

Hates[Agatha, I] #= 1 #=> Hates[Butler, I] #= 1
end,
% Nobody hates everyone.
foreach (I in 1..N)

sum([Hates[I,J] : J in 1..N]) #=< 2
end,
% Who killed Agatha?
Vars = [Killer] ++ Hates ++ Richer,
solve(Vars).

Fig. 3.4 “Who killed Agatha”, using reification
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For this reason, it is important to declare the domains as small as possible, in
order to avoid any unnecessary work that the solver has to do in order to deal with
irrelevant values, such as values that are too small or too large.

Sometimes, during the reading phase, the solver can figure out the lower and
upper bounds of a domain directly. For example, when using sum:

% ...
N = 10,
Xs = new_list(N),
Xs :: 1..N,

% ...
Z #= sum(Xs),
solve(X).

The cp module will figure out while reading the constraint that the smallest
possible value of Z is 10 (i.e., 10∗1) and that the largest possible value is 100 (i.e.,
10∗10), so the domain of Z is 10..100. However, it is always good to make it a habit
to declare the domains when possible.

When building and debugging a model, it is also good practice to print the de-
cision variables to see whether the domains seem reasonable. The following is an
example of printing decision variables:

Picat> import cp
Picat> Xs = new_list(3), Xs :: 1..10, Z #= sum(Xs)
Xs = [DV_013968_1..10,DV_0139b8_1..10,DV_013a08_1..10]
Z = DV_013ca0_3..30

Here, the result from the Picat interpreter is shown, to emphasize that this kind
of testing can be done both in the model and in the interpreter for testing small
code snippets. The output shows Xs as it is represented in Picat. A decision variable
is shown as DV Id <Domain>, e.g., DV 013968 1..10, where “013968” is an
internal id, and 1..10 is the domain of the decision variable.

Note that if a value has been removed from the domain, then it will not be shown
when the domain is printed. For example, when a decision variable is constrained
to be an even number between 1 and 10, it has the domain {2, 4, 6, 8, 10}, which is
presented like this:

Picat> A :: 1..10, A mod 2 #= 0
A = DV_0111b8_2_4_6_8_10

As mentioned in Section 2.3.2, when Picat’s cpmodule reads a constraint, it tries
to reduce the domains as much as possible, based on the propagation rules of the
constraint. In general, domain reduction alone cannot lead to a solution, and search
is necessary to find solutions. Note that the sat module does not perform this type
of domain reduction until solve is called.
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3.5 Search and Search Strategies (cp Module)

As mentioned in Chapter 2, one of the ways to make a cp model more efficient is
to use different search strategies, or heuristics. A heuristic is a strategy for deciding
the order in which variables are selected and the order in which values are tried for
the selected variable.

Picat has a number of different search strategies, including the following6:
Variable selection: These affect the order in which the decision variables are

selected:

• backward: Before searching, the list of variables is reversed.
• constr: Variables are first ordered by the number of constraints to which they

are attached.
• degree: Variables are first ordered by degree, i.e., the number of connected

variables.
• ff: The first-fail principle is used: select the leftmost variable with the smallest

domain.
• ffc: This is a combination of ff and constr.
• ffd: This is a combination of ff and degree.
• forward: Choose variables in the given order, from left to right.
• inout: The variables are reordered in an inside-out fashion. For example, the

variable list [X1,X2,X3,X4,X5] is rearranged into the list
[X3,X2,X4,X1,X5].

• leftmost: This is the same as forward.
• max: First, select a variable whose domain has the largest upper bound, breaking

ties by selecting a variable with the smallest domain.
• min: First, select a variable whose domain has the smallest lower bound, break-

ing ties by selecting a variable with the smallest domain.
• rand var: Variables are randomly selected when labeling.

Value selection: These strategies determine in which order values should be
tested on the selected variable:

• down: Values are assigned to the variable from the largest value to the smallest
value.

• rand val: Values are randomly selected when labeling.
• reverse split: Bisect the variable’s domain, excluding the lower half first.
• split: Bisect the variable’s domain, excluding the upper half first.
• updown: Values are assigned to the variable from the values that are nearest to

the middle of the domain.

When no search strategy is specified, Picat uses the default strategy: forward
and down. Another possible search strategy is the combined strategy rand, where
both variables and values are randomly selected when labeling.

6 This section only applies to the cp module. The sat module ignores the search strategies.



3.5 Search and Search Strategies (cp Module) 59

Unfortunately, there is no simple answer for which labeling strategy is the best
for a specific model. Instead, experimentation must be applied.

Modeling tip: The most common labelings to test first are:

• solve without any labeling options
• ff combined with down or split

Sometimes, these labelings give a good enough result. However, when working
with larger problems, it might be necessary to systematically test all the labeling
combinations. As an example, the magic squares problem will be used.

3.5.1 Magic Squares — Systematically Testing All Labelings

The magic squares problem7 is a classic CSP problem where the objective is to
create a square numerical matrix in which every row, every column, and both diag-
onals sum to the same number. Figure 3.5 gives a Picat model for this problem. The
model is straightforward, using the all different/1 constraint and the built-in
sum/1. The sum is precalculated to N*(N*N+1)/2. When ensuring that all of the
values in the Square matrix are distinct, Square.vars() is used to extract the
decision variables from the matrix to a list.

The predicate magic has two extra parameters, VarSel and ValSel, for the
selected variable and the value strategies, respectively.

Two helper predicates are used for testing. The timeout(Goal, Timeout,
Status) predicate calls the goal Goal with a maximum of Timeout millisec-
onds. If the predicate times out, the Status will be time out. If the predicate
succeeds, the status will be success.

For a predicate P, the time2(P) predicate shows both the runtime of the predi-
cate in seconds, and the number of backtracks. The number of backtracks represents
the complexity of the search: it is the number of times the solver backtracks in the
search tree to get the solution. A lower number of backtracks is better than a higher
number. The ideal is 0 backtracks, which means that the solution has been found
without any backtracking. Puzzles such as Sudoku usually have 0 backtracks when
given the proper search heuristics.

Sometimes the number of backtracks is a more interesting value for comparing
different search strategies — as well as different models of the same problem —
than the solving time, since it provides a hint about the search tree’s structure.

In Table 3.2, “to” indicates a timeout status, “s” indicates the number of seconds,
“bt” indicates the number of backtracks. The “Sum” column and row show the total
number of successful searches in the adjacent columns and rows. The result indi-
cates that the magic square program should use some of the ffc or ffd variable
selections. Interestingly, the updown value selection, in which the values closest

7 Taken with permission from http://www.csplib.org/Problems/prob019/.
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import cp.

main =>
selection(VarSels),
choice(ValSels),
Timeout = 10000, % Timeout in milliseconds
N = 7, % size of problem
foreach (VarSel in VarSels, ValSel in ValSels)

time2(time_out(magic(N,_Square,VarSel,ValSel),
Timeout,Status)),

println([VarSel,ValSel,Status])
end.

magic(N,Square,VarSel,ValSel) =>
NN = N*N,
Sum = N*(NN+1)//2,% magical sum

Square = new_array(N,N),
Square :: 1..NN,

all_different(Square.vars()),

foreach (I in 1..N)
Sum #= sum([Square[I,J] : J in 1..N]), % rows
Sum #= sum([Square[J,I] : J in 1..N]) % columns

end,

% diagonal sums
Sum #= sum([Square[I,I] : I in 1..N]),
Sum #= sum([Square[I,N-I+1] : I in 1..N]),

solve([VarSel,ValSel], Square).

% Variable selection
selection(VarSels) =>

VarSels = [backward,constr,degree,ff,ffc,ffd,
forward,inout,leftmost,max,min,up].

% Value selection
choice(ValSels) =>

ValSels = [down,reverse_split,split,up,updown].

Fig. 3.5 Magic square
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to the center are taken first, is very good when used together with most of the vari-
able selections. This suggests that further experiments are needed, such as a longer
timeout or a larger problem instance.

Table 3.2 Magic square (N=7), different labelings, timeout 10 seconds (s/bt)

var/val down split reverse split up updown Sum
backward to to to to 0.2/71610 1
constr to to to to 0.4/164240 1
degree to to to to to 0
ff to to to to 0.0/15726 1
ffc 0.2/75115 0.2/0 0.2/0 0.2/52383 0.2/71609 5
ffd 0.0/978 0.0/0 0.0/0 0.0/692 0.0/1139 5
forward to to to to 0.2/70356 1
inout to to to to 0.0/13750 1
leftmost to to to to 0.2/70356 1
max to to to to to 0
min to to to to to 0
Sum 2 2 2 2 8

3.6 Scheduling — the cumulative Constraint

There are many types of scheduling problems. In Constraint Programming, there is
a dedicated global constraint cumulative/48 for solving a certain variant of the
scheduling problem.

The model in Figure 3.6 shows a schedule for planning how to move furniture,
in which four people have gathered to move different kinds of furniture:

• piano
• 4 chairs, named chair1, chair2, chair3, and chair4
• bed
• table
• TV
• 2 shelves, named shelf1 and shelf2

There are also some precedence constraints, where a certain piece of furniture
must be moved before another piece of furniture:

• shelf1 must be moved before the bed
• shelf2 must be moved before the table
• the bed must be moved before the piano
• the TV must be moved before the table

This example uses the global scheduling constraint

8 http://sofdem.github.io/gccat/gccat/Ccumulative.html
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import cp, util.

main =>
data(1,Data,MaxPeople,MaxTime,Precedences),
schedule(Data,MaxPeople,MaxTime,Precedences).

schedule(Data,MaxPeople,MaxTime,Precedences) =>
N = Data.length,
[_Names,PeopleNeeded,Duration] = Data.transpose(),
NameIxMap = new_map([Data[I,1]=I : I in 1..N]),
% decision variables
Start = new_list(N),
Start :: 0..MaxTime,
% end time of the tasks
End = new_list(N),
End :: 0..MaxTime,
% number of people needed
NumPeople :: 0..MaxPeople,

% constraints
cumulative(Start, Duration, PeopleNeeded, NumPeople),
% connect start and end time for each task
foreach (Task in 1..N)

End[Task] #= Start[Task] + Duration[Task]
end,
MaxEnd #= max(End), % maximum End time
% precedences: task P1 must be finished before task P2 starts
foreach ([P1,P2] in Precedences)

End[NameIxMap.get(P1)] #< Start[NameIxMap.get(P2)]
end,
% search
Vars = End ++ Start ++ [NumPeople],
solve($[ff,split,min(MaxEnd)],Vars),
nl,
println(numPeople=NumPeople),
println(maxEnd=MaxEnd),
println(start=Start),
println(end=End).

data(1,Data,MaxPeople,MaxTime,Precedences) =>
% name, people, time (in minutes)

Data = [
[piano , 3, 30],
[chair1, 1, 10], % chairs
[chair2, 1, 10],
[chair3, 1, 10],
[chair4, 1, 10],
[bed , 3, 20],
[table , 2, 15],
[shelf1, 2, 15], % shelves
[shelf2, 2, 15],
[tv , 2, 15]

],
MaxPeople = 4,
MaxTime = sum([T : [_,_,T] in Data]),
Precedences =
[

[shelf1,bed],
[shelf2,table],
[bed,piano],
[tv,table]

].

Fig. 3.6 Furniture moving, using cumulative
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cumulative(Starts, Durations, Resources, Limit)

where Starts is a list of decision variables for each task (which refers to each
piece of furniture in this example) with the domain 0..MaxTime. The two lists
Durations and Resources are lists with the durations and the number of peo-
ple required for each task, respectively. In general, the Starts, Durations, and
Resources lists can either be decision variables or lists of integers. Limit is the
total number of resources needed to fulfill all the tasks, and can also be a decision
variable or an integer. The cumulative constraint ensures that the limit cannot be
exceeded at any given time.

Note that cumulative/4 does not include the end times of the tasks. There-
fore, it is necessary to add the End list in order to define the end time for each task
as End[Task] #= Start[Task] + Duration[Task]. The decision vari-
able MaxEnd is the largest end time, which is the total time required to perform all
of the tasks.

The two common scenarios for scheduling these kinds of problems are to either
minimize the maximum end time, or to minimize the number of resources needed
(the Limit variable). This model uses the first scenario, minimizing the total time
needed to move all of the furniture.

The precedence constraints are handled by ensuring that one task (P1) ends
before the other one (P2) is started. This is accomplished by using the map
NameIxMap. NameIxMap maps each furniture name to a unique integer which
can be used as an index in the Start and End matrices. This allows the prece-
dences to be stated within a foreach loop as

End[NameIxMap.get(P1)] #< Start[NameIxMap.get(P2)]

where NameIxMap.get(P1) extracts the integer that represents the name of the
furniture P1 from NameIxMap.

A note on data extraction: The model uses the transpose built-in from the
util module to extract the three lists Names, PeopleNeeded, and Duration
from the Data matrix:

import util.
% ...
[Names,PeopleNeeded,Duration] = Data.transpose()}.
% ...

This is a more compact variant than using list comprehensions:

% ...
N = Data.length,
Names = [Data[I,1] : I in 1..N],
PeopleNeeded = [Data[I,2] : I in 1..N],
Duration] = [Data[I,3] : I in 1..N],
% ...
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3.7 Magic Sequence — global cardinality/2 and the Order
of Constraints

The magic sequence problem9 is another classic CSP problem:

A magic sequence of length n is a sequence of integers x0 . . xn−1 between 0 and n-1, such
that for all i in 0 to n-1, the number i occurs exactly xi times in the sequence. For instance,
6,2,1,0,0,0,1,0,0,0 is a magic sequence since 0 occurs 6 times in it, 1 occurs twice, ...

Figure 3.7 shows a model for the problem. The global constraint
global cardinality(Sequence, Pairs)10 is a good fit for this problem,
since its purpose is to handle the problem to count the occurrences of elements
in Sequence. The decision variable list Sequence consists of a list of N ele-
ments with the domain of 0..N-1, where the element Sequence[I+1] is the
number of occurrences of the integer I in the list. Since Picat’s lists and arrays are
1-based, the counts must be adjusted by adding 1 to each element’s position in the
Sequence list. global cardinality(Sequence, Pairs) requires two
arguments: the list of decision variables (which will be called Sequence in the
magic sequence model), and a list of pairs of the cardinalities (which will be called
Pairs). Each item in the Pairs list takes the form K-V, indicating that K must
appear exactly V times in Sequence.

Using just the global cardinality constraint is enough for solving the
magic sequence problem, at least for smaller values. However, in order to speed
up the model, some extra constraints are added. These constraints do not really in-
fluence the number of solutions (in contrast to “symmetry breaking” constraints);
instead, they just make the model faster, and are therefore sometimes called redun-
dant constraints. This model has two extra constraints based on observations about
the nature of the problem:

• The sum of the numbers in the sequence must always be N.
• The scalar product of the numbers and the indices must be N.

scalar product is a built-in constraint.

Modeling tip: This model demonstrates an interesting property of Picat’s cp
module: The order of constraints in the model matters, and changes in the order can
give an improvement of speed. If the global cardinality is before the extra
redundant constraint, then N = 400 takes about 8 s to solve. If, on the other hand,
the global cardinality is after the extra constraints, then N = 400 is much
faster, taking about 0.8 s.

The reason for this difference is that when Picat’s cp module parses the con-
straint, it directly tries to reduce domains as much as possible. To see this more
clearly, here are the domains after each constraint in the version of the model where
global cardinality follows the redundant constraints, when N= 7:

% Sequence = new_list(N),
% Sequence :: 0..N-1,

9 Taken with permission from http://www.csplib.org/Problems/prob019/.
10 http://sofdem.github.io/gccat/gccat/Cglobal cardinality.html
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import cp.

main =>
magic_sequence(100,Sequence),
println(Sequence).

magic_sequence(N, Sequence) =>
Sequence = new_list(N),
Sequence :: 0..N-1,

% extra/redudant constraints to speed up the model
N #= sum(Sequence),
Integers = [I : I in 0..N-1],
scalar_product(Integers, Sequence, N),

% create list: [0-Sequence[1], 1-Sequence[2], ...]
Pairs = [$I-Sequence[I+1] : I in 0..N-1],
global_cardinality(Sequence,Pairs),

solve([ff], Sequence).

Fig. 3.7 Magic sequence

[0..6, 0..6, 0..6, 0..6, 0..6, 0..6, 0..6]

% N #= sum(Sequence),
[0..6, 0..6, 0..6, 0..6, 0..6, 0..6, 0..6]

% Integers = [I : I in 0..N-1],
% scalar_product(Integers, Sequence, N),
[0..6, 0..6, 0..3, 0..2, 0..1, 0..1, 0..1]

% create list: [0-Sequence[1], 1-Sequence[2], ...]
Pairs = [$I-Sequence[I+1] : I in 0..N-1],
global_cardinality(Sequence,Pairs),
[0..6, 0..6, 0..3, 0..2, 0..1, 0..1, 0..1]

After the sum constraint, no domains are reduced. However, after the
scalar product constraint, all of the domains for the numbers 2 and up are dras-
tically reduced. The domains of the participating variables in the
global cardinality constraint are reduced. In the variant of the model where
global cardinality precedes the redundant constraints, this reduction is not
done.
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3.8 Circuit — Knight’s Tour Problem

The knight’s tour problem11 is a well-known CSP problem, studied by Leonhard
Euler. The original version of the problem is to create a tour on an 8× 8 chess-
board that covers all of the squares by using the movement of a knight: two steps
in one non-diagonal direction followed by one step in an orthogonal direction. The
knight’s tour must be closed, meaning that from the last position in the tour it must
be possible for the knight to jump to the starting square. Furthermore, each square
on the chessboard must be visited exactly once. The general version of the problem
is to create a knight’s tour on square N×N chessboards that have sizes other than
8×8.

1 32 29 6 3 18
30 7 2 19 28 5
33 36 31 4 17 20
8 23 34 15 12 27

35 14 25 10 21 16
24 9 22 13 26 11

Fig. 3.8 Knight’s tour on a 6×6 board

One example of a knight’s tour on a 6× 6 board is shown in Figure 3.8. The
tour starts at the upper-left square (1,1), marked by 1 (indicating the first step),
continues to square (2,3), marked by 2 (indicating the second step), etc. The last
square covered is (3,2), marked with 36. Note that the 36 square is a knight’s jump
from the starting position, completing the tour.

The CP model shown in Figure 3.9 will work with even-sized square boards,
where N×N is an even number. However, for odd-sized boards, this model will not
work. Note that, for N < 6, there are no solutions for even-sized square boards.

Problems that involve tours, which are also called circuits, can usually be mod-
eled with the global constraint circuit.12 The circuit constraint requires a
list of decision variables with the domain 1..List.length, and ensures that the
list contains a circuit, where each value in the list represents the index of the next
position to visit. Recall that, in a circuit, each position is visited exactly once, so
each value in the list is different.

An example of a circuit of length 6 is the list [2,3,4,5,6,1], indicating that,
starting from position 1 (index 1), the next position visited is position 2, followed by
positions 3, 4, 5, and 6. Finally, after position 6, position 1 is visited again in order
to close the tour. The path, or tour, of the visited positions is 1,2,3,4,5,6.

A more interesting example is the circuit [3,5,2,1,6,4], where the visiting
tour is 1,3,2,5,6,4. Note that the list that is created by the circuit constraint
should not be confused with the visiting tour representation. Depending on the ap-

11 https://en.wikipedia.org/wiki/Knight’s tour
12 http://sofdem.github.io/gccat/gccat/Ccircuit.html



3.8 Circuit — Knight’s Tour Problem 67

import cp.
main =>

N = 6,
knight(N,X),
println(x=X),
println("X:"),
print_matrix(X),
extract_tour(X,Tour),
println("Tour:"),
print_matrix(Tour).

% Knight’s tour for even N*N.
knight(N, X) =>

X = new_array(N,N),
X :: 1..N*N,
XVars = X.vars(),
% restrict the domains of each square
foreach (I in 1..N, J in 1..N)

D = [-1,-2,1,2],
Dom = [(I+A-1)*N + J+B : A in D, B in D,

abs(A) + abs(B) == 3,
member(I+A,1..N), member(J+B,1..N)],

Dom.length > 0,
X[I,J] :: Dom

end,
circuit(XVars),
solve([ff,split],XVars).

extract_tour(X,Tour) =>
N = X.length,
Tour = new_array(N,N),
K = 1,
Tour[1,1] := K,
Next = X[1,1],
while (K < N*N)

K := K + 1,
I = 1+((Next-1) div N),
J = 1+((Next-1) mod N),
Tour[I,J] := K,
Next := X[I,J]

end.

print_matrix(M) =>
N = M.length,
V = (N*N).to_string().length,
Format = "% " ++ (V+1).to_string() ++ "d",
foreach(I in 1..N)

foreach(J in 1..N)
printf(Format,M[I,J])

end,
nl

end,
nl.

Fig. 3.9 Knight’s tour model for even-sized square boards
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plication, it might be necessary to convert the list given by the circuit constraint
to show a more natural representation of the tour. The model in Figure 3.9 is an
example where such a conversion is needed.

The knight’s tour model uses the matrix X as the main representation of the N×N
board. However, the circuit constraint only works on one-dimensional lists, not
on matrices, so the X matrix is converted to a list, XVars, via the vars/1 function.

The list XVars that is created by the circuit constraint represents the tour
shown above:

XVars = [9,13,7,8,16,10,15,19,5,18,3,4,21,1,2,12,6,29,32,
31,25,30,34,11,14,22,35,36,33,17,27,28,20,26,24,23]

The corresponding matrix representation, the matrix X, is shown below:

9 13 7 8 16 10
15 19 5 18 3 4
21 1 2 12 6 29
32 31 25 30 34 11
14 22 35 36 33 17
27 28 20 26 24 23

The circuit shown in the X matrix and in XVars is interpreted in the same way as
the lists shown above. The circuit always starts in position X[1,1] (or XVars[1])
which, in this case, contains the value of the second location that the knight visits: 9,
which means the ninth position in the matrix, i.e. the (2,3) square. The value of the
ninth element in the list is 5 which means that the third location visited is in position
5, the (1,5) square, etc.

This representation of the tour is much harder to follow than the representation
shown in Figure 3.8, so the model adds a helper predicate, extract tour, to
extract the visiting tour from the X matrix. In the while loop, each tour position, K
that is stored in the X matrix (the value in the Next variable), is converted to the
two-dimensional coordinates I and J, which are then inserted in the Tour matrix
with the value of the corresponding K value, i.e. Tour[I,J] := K. The while
loop ends when all N×N values have been converted and inserted into the Tour
matrix.

The circuit constraint is the only constraint that is used in the model, but very
important work is done in the foreach loop that precedes the circuit constraint.
The foreach loop reduces the domain of each square so that it only contains the
positions to which the knight can jump from that square. This domain reduction
speeds up the model considerably. Note that the circuit constraint is placed after
the domain-reducing loop in order to work with much smaller domains, rather than
using all the possible values of 1..N.

The predicate print matrix/1 is used for formatted printing of the matrices.
Normally, printing the X matrix is not so interesting in a final model, and is included
here for educational purposes. However, when debugging the model, it is important
to print the X matrix.

The circuit constraint is used again in Chapter 7, where a CP model of the
Traveling Salesman Problem is described and compared with other approaches.
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Benchmarking: This model quickly solves most of the even-sized N×N square
boards for 6 ≤ N ≤ 36, and, with the exception of N=32, all instances are solved
well below 1 s; N=32 is solved in about 35 s. For sizes larger than that, the model
with the [ff,split] labeling has problems: for N=38, the model does not solve
the problem in 8 h. However, it does solve some larger instances in under 10 min,
such as solving N=138 in 94 s.

Using the [ffc] labeling instead, the N=38 problem is solved in 0.5 s. However,
it has the same behavior as the original labeling: while it solves some large problems
quickly, such as solving N=72 in 7 s, it has problems with smaller instances, such
as N=24, which is not solved within 10 min. Table 3.3 shows various sizes and the
corresponding solve times for the two labelings [ff,split] and [ffc] with a
10-min timeout.

It is not easy to draw a conclusion based on these values, except that it is al-
most always worthwhile to experiment with different labelings for large problem
instances. For quite a few instances one labeling times out, while the other solves it
quickly. Another observation is that either a problem is solved in less than 1.5 min,
or the problem is not solved before the 10-min timeout. With the exception of N=32,
the solving times increase with the problem size.

Table 3.3 Times for the knight’s tour problem, even-sized N×N board, different labelings

N ff,split (s) ffc (s)
6 0.000 0.000
8 0.000 0.001
10 0.003 0.004
32 37.270 34.494
38 0.518 to
40 0.641 0.611
42 to 0.768
110 38.604 38.401
114 to 33.271
138 to 93.885

3.9 The regular Constraint — Global Contiguity and Nurse
Rostering

The regular constraint is useful for certain kinds of scheduling problems where
a schedule is a sequence of activities that is accepted by an automaton. A DFA
(deterministic finite automaton) is given by a transition function, a start state, and a
set of final states.

The hard part of using the regular constraint is to encode and set up the transi-
tion matrix. Later in this section, an example of a nurse rostering problem is demon-
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strated, but for explaining the regular constraint, a simpler problem is described
first: a decomposition of the global constraint global contiguity.

3.9.1 global contiguity

In some models that use 0/1 variables, there is sometimes a need to ensure that, if
there are any 1’s, then they must appear in exactly one contiguous segment, for ex-
ample [0,0,1,1,1,1,0,0,0] or [1,1,1,1,0,0,0,0,0]. The global constraint
global contiguity13 ensures this property in a list of decision variables with
the domains 0..1. This constraint is not a Picat built-in, so this section will define a
decomposition of the constraint.

The requirement can be translated to the regular expression “0*1*0*”, meaning
that first there is a segment of zero or more 0’s, then a segment of zero or more 1’s,
and finally a segment of zero or more 0’s. The DFA for this is shown in Figure 3.10.

Fig. 3.10 DFA for “0*1*0*”

State S1 is the start state, and S3 is the final state; final states are indicated by a
double circle. From state S1, a 0 stays in S1, while a 1 transitions to state S2, etc.

The transition matrix for the DFA is shown in Table 3.4, where the rows rep-
resent the states, and the columns represent the input. The table encodes the same
information as the graph, e.g., if in state S1 (row 1) and the input is “0”, then stay in
state S1; if the input is “1”, then go to state S2 (row 2), etc.

Table 3.4 Transition table for global contiguity

State/Input 0 1
S1 1 2
S2 3 2
S3 3 0

In this representation, the state 0 represents a forbidden state, which means that
it is not possible to be in state S3 with an input of “1”.

This transition table can then be used to define the constraint
global contiguity with the following call to regular:

13 http://sofdem.github.io/gccat/gccat/Cglobal contiguity.html



3.9 The regular Constraint — Global Contiguity and Nurse Rostering 71

regular(RegInput,NStates,InputMax,Transition,
InitialState,FinalStates)

where the parameters are:

• RegInput: the list of decision variables with an appropriate domain (see the
note below)

• NStates: the number of states, here 3
• InputMax: the number of inputs, here 2
• Transition: the transition matrix
• InitialState: the initial state, here state 1
• FinalStates: a list of final states. Here state 3 is the only final state.

Note: The global contiguity constraint translates the values 0 and 1 of
the input list to 1 and 2, since Picat’s version of regular only works with positive
integers in the RegInput list, meaning that 0 is not allowed.

The model’s main predicate creates a list of six decision variables that have
the domain of 0..1, calls the global contiguity constraint, and then prints all
possible solutions.

3.9.2 Nurse Rostering

Now that the regular constraint has been explained, it is time to use the constraint
for a scheduling problem.14

The nurse rostering scheduling problem has the following constraints:

• Each nurse must have one day off during every 4 days, and a nurse cannot work
3 nights in a row.

• There must be a minimum of MinDayShift nurses in each day shift, and a
minimum of MinNightShift nurses in each night shift.

Figure 3.13 shows a model for the nurse rostering problem. The first constraint,
the requirements for each nurse, uses the regular constraint as presented in Sec-
tion 3.9.1, with the DFA in Figure 3.12.

The three inputs are: o for a day off, d for a day shift, and n for a night shift. All
of the states are final states, meaning that the schedule for a nurse can end in any
state (any shift).

The DFA is then translated to the transition matrix that is shown in the model.
The model has two matrices of decision values. X is the schedule for each nurse (the
rows) for all the days in the schedule (the columns), where 1 represents a day shift,
2 represents a night shift, and 3 represents a day off. The Stat matrix collects the
statistics of the days to ensure the requirements of minimum day and night shifts.

Modeling tip: When dealing with this type of DFA-based schedule, it is recom-
mended to first use pen and paper to build the DFA as a graph, and then to write the
transition matrix.
14 This example was inspired by the nurse rostering example in the MiniZinc Tutorial.
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import cp.

main =>
N = 6,
X = new_list(N),
X :: 0..1,
global_contiguity(X),
solve(X),
println(X),
fail.

global_contiguity(X) =>
N = X.length,

% This uses the regular expression "0*1*0*" to
% require that all 1’s (if any) in an array
% appear contiguously.
Transition = [

[1,2], % state 1: 0*
[3,2], % state 2: 1*
[3,0] % state 3: 0*
],

NStates = 3,
InputMax = 2,
InitialState = 1,
FinalStates = [1,2,3],

RegInput = new_list(N),
RegInput :: 1..InputMax, % 1..2

% Translate X’s 0..1 to RegInput’s 1..2
foreach (I in 1..N)

RegInput[I] #= X[I]+1
end,

regular(RegInput,NStates,InputMax,
Transition,InitialState,FinalStates).

Fig. 3.11 Global contiguity

3.9.3 Alternative Approach for Valid Schedules: Table Constraint

An alternative approach for handling valid schedules is to use the table in con-
straint (also known as table, extensional constraint, or in relation15). The basic idea
is to enumerate all the valid schedules, and then to ensure that a nurse’s schedule is
among these valid schedules.

The table in constraint has two parameters: Schedule, a tuple of days (as
an array), and Valid, a list of all valid schedules.

15 http://sofdem.github.io/gccat/gccat/Cin relation.html
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Fig. 3.12 DFA for nurse requirements

An example is the following model, which has three valid 7-day schedules:

• [day,day,day,day,day,off,off]
• [night,off,night,off,day,day,off]
• [night,night,off,off,day,day,off]

including their rotational variants. In order to be used with table in, these must
be converted to a tuple of integers. The constraints regarding the minimum num-
ber of day and night shifts per day are the same as the regular variant that was
described in Section 3.9.2.

For this specific scheduling example, the regular approach is probably better
to use than the table in approach, since the regular approach is more flexible.
If the schedule should be changed to 14 days instead of 7, then the table in vari-
ant must redefine the valid schedules, whereas this is not needed in the regular
variant. Also, for the table in model, all the rotational variants must be handled;
this is not needed when using a DFA and regular.

Note: Picat also supports table notin, which forbids certain combinations
instead of allowing them.

3.10 Debugging Constraint Models

Debugging a constraint model requires a different approach than debugging a tradi-
tional non-constraint program. The reason is that in a constraint model, everything
“happens at the same time” when solve has been started. This means that the
traditional “print debugging” does not work in the same way.

Some of the debugging methods have been mentioned earlier, such as printing
the decision variables to see the domains in the read phase, or determining whether
a certain point in the code is reached by using println statements.

The usual reason for debugging is that there is no solution, or that the given
solution is not correct. Another reason may be that the model is too slow.
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import sat.

main =>
problem(1,NumNurses,NumDays,MinDayShift,MinNightShift),
nurse_rostering(NumNurses,NumDays,

MinDayShift,MinNightShift,X,_Stat),
foreach(Nurse in X) println(Nurse) end.

nurse_rostering(NumNurses,NumDays,
MinDayShift,MinNightShift,X,Stat) =>

% The DFA for the regular constraint.
Transition = [

% d n o
[2,3,1], % state 1
[4,4,1], % state 2
[4,5,1], % state 3
[6,6,1], % state 4
[6,0,1], % state 5
[0,0,1] % state 6

],
NStates = Transition.length, % number of states
InputMax = 3, % 3 states
InitialState = 1, % start at state 1
FinalStates = 1..6, % all states are final
DayShift = 1,
NightShift = 2,
OffShift = 3,
% decision variables
X = new_array(NumNurses,NumDays),
X :: DayShift..OffShift,
% summary of the shifts: [day,night,off]
Stat = new_array(NumDays,3),
Stat :: 0..NumNurses,
% constraints
foreach (I in 1..NumNurses)

regular([X[I,J] : J in 1..NumDays],
NStates,
InputMax,
Transition,
InitialState,
FinalStates)

end,
% statistics for each day
foreach (Day in 1..NumDays)

foreach (Type in 1..3)
Stat[Day,Type] #=

sum([X[Nurse,Day] #= Type : Nurse in 1..NumNurses])
end,
sum([Stat[Day,Type] : Type in 1..3]) #= NumNurses,
% For each day the must be at least 3 nurses with
% day shift, and 2 nurses with night shift
Stat[Day,DayShift] #>= MinDayShift,
Stat[Day,NightShift] #>= MinNightShift

end,
Vars = X.vars() ++ Stat.vars(),
solve(Vars).

problem(1,NumNurses,NumDays,MinDayShift,MinNightShift) =>
NumNurses = 7,
NumDays = 14,
MinDayShift = 3, % minimum number in day shift
MinNightShift = 2. % minimum number in night shift

Fig. 3.13 Nurse rostering, using the regular constraint
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import sat.

main =>
Day = 1, % day shift
Night = 2, % night shift
Off = 3, % off
% valid 7 day schedules
Valid1 = [

[Day,Day,Day,Day,Day,Off,Off],
[Night,Off,Night,Off,Day,Day,Off],
[Night,Night,Off,Off,Day,Day,Off]

],
% create all rotational variants
Valid = [],
foreach (V in Valid1, R in 0..V.length-1)

Rot = rotate_left(V,R).to_array(),
Valid := Valid ++ [Rot]

end,
NumNurses = 14,
NumDays = Valid[1].length,

X = new_array(NumNurses,NumDays),
X :: Day..Off,
% ensure a valid scheme for each nurse
foreach (Nurse in 1..NumNurses)

table_in([X[Nurse,D] : D in 1..NumDays].to_array(),Valid)
end,
foreach (D in 1..NumDays)

sum([X[Nurse,D] #= Day : Nurse in 1..NumNurses]) #>= 3,
sum([X[Nurse,D] #= Night : Nurse in 1..NumNurses]) #>= 2

end,
Vars = X.vars(),
solve(Vars),
foreach(Nurse in X) println(Nurse) end.

rotate_left(L) = rotate_left(L,1).
rotate_left(L,N) = slice(L,N+1,L.length) ++ slice(L,1,N).

Fig. 3.14 Nurse rostering, using the table in constraint

• Test early and often. For a beginner, it can be good practice to test the model after
each new constraint is added.

• Check the domains.
• First test with a small instance that has a known output, in order to ensure that

the model is correct. Testing is much simpler with small instances, since it will
be faster to solve and easier to check the solutions.

• If a model doesn’t work:

– Remove one constraint after another and test again.
– Check the domains again.
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• In order to ensure correctness, count the number of solutions (using find all/2
or solve all). For example, the 8-queens problem should give 92 solutions
without symmetry breaking. A Sudoku problem should have exactly one solu-
tion: try to find 2 solutions by including fail at the end of the model.

• Use the report option to print intermediate values in optimization problems.
• If the (cp) model is too slow: Test different search strategies to speed up the

search.

3.11 Bibliographical Note

The Global Constraint Catalog [6] is a large collection of the best-known global
constraints, including descriptions of the constraints, references, and examples.

CSPLib [29] is a collection of many standard constraint satisfaction problems.
This chapter quotes CSPLib problem 19, the magic squares and sequences problem
[60], and problem 24, the Langford number problem [61]. For Picat implementa-
tions of some of the CSPLib problems, see
http://www.csplib.org/Languages/Picat/models/.

MiniZinc is another language that can be used for constraint problems. The
MiniZinc tutorial [38] includes a number of constraint modeling examples.

The implementation of each global constraint can require multiple algorithms. A
discussion of the regular constraint and its implementation can be found in [43].

3.12 Exercises

1. Modify the program for Langford’s number problem to solve the generalized
variation: Given n sets of positive integers 1..k, arrange them in a sequence such
that, following the first occurrence of an integer i, each subsequent occurrence of
i must appear exactly i+1 indices after the prior occurrence.

2. Symmetry breaking: implement the lex2(Matrix)16 constraint which en-
sures that all rows and columns in a matrix are lexicographically ordered. Hint:
Use lex lt/2 or lex le/2.

3. Determine why the Who Killed Agatha problem has eight different solutions.
4. The knight’s tour model in Section 3.8 only works with even-sized square chess-

boards. Modify the model to support non-square M×N chessboards, where M
and N are both even.

5. The knight’s tour models in Section 3.8 and in the previous exercise only work
with even-sized chessboards. Modify the model from Section 3.8 to support odd-
sized chessboards, i.e. where M×N is odd.
Hint 1: The global constraint subcircuit can be used.

16 http://sofdem.github.io/gccat/gccat/Clex2.html
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Hint 2: Most odd square sizes can be solved by excluding the middle square from
the circuit and using the circuit constraint.

6. In the nurse rostering program, the day and night shifts for each nurse are not
distributed evenly. Add to the model a way to minimize the difference between
the numbers of day and night shifts. Hint: One way to do this is to minimize the
differences of the “nurse points”, where a nurse point is, for example, 1 for a day
shift, and 2 for a night shift.

7. Test both the cp and sat modules for larger problem instances of the nurse
rostering problem, such as more nurses and/or more days in the schedule. Also,
change the minimum number of day/night shifts.

8. Implement the 3 jugs problem using regular. The problem can be stated as:

There are 3 water jugs. The first jug can hold 3 liters of water, the second jug can hold
5 liters, and the third jug is an 8-liter container that is full of water. At the start, the
first and second jugs are empty. The goal is to get exactly 4 liters of water in one of the
containers.

9. Implement a Nonogram solver using regular. For a description of the problem,
see https://en.wikipedia.org/wiki/Nonogram.

10. For each of the following global constraints, search the Global Constraint Cat-
alog17 (GCC) for its meaning. Determine whether Picat implements this con-
straint. If Picat implements the constraint, test it with the GCC’s example. Oth-
erwise, implement the constraint in Picat, and test it with the GCC’s example.

• diffn/1
• increasing/1
• decreasing/1
• nvalues/3
• sliding sum/4

11. Implement the following problems from CSPLib18:

• prob001: Car Sequencing
• prob006: Golomb rulers
• prob007: All-Interval Series
• prob016: Traffic Lights
• prob023: Magic Hexagon
• prob057: Killer Sudoku

Do not peek if there already is a Picat model.

17 http://sofdem.github.io/gccat/
18 http://www.csplib.org/Problems/





Chapter 4
Dynamic Programming with Tabling

Abstract Tabling is a kind of memoization technique that caches the results of cer-
tain calculations in memory and reuses them in subsequent calculations through
a quick table lookup. Tabling makes declarative dynamic programming possible.
Users only need to describe how to break a problem into subproblems; they do not
need to implement the data structures and algorithms for storing and looking up
subproblems and their answers. This chapter describes the syntax and semantics of
tabling in Picat, and demonstrates several dynamic programming examples.

4.1 Introduction

Dynamic programming (DP) is a recursive method for solving complex decision-
making problems. DP employs two key ideas. First, it breaks a problem down into
simpler subproblems, and constructs a solution for the main problem by combining
the solutions of the subproblems. Second, it stores the solutions of all of the solved
subproblems, so that the solution for a subproblem is only computed when the sub-
problem occurs for the first time. This allows the stored solution to be reused for all
of the subsequent occurrences of the same subproblem.

Picat provides a memoization technique, called tabling, for dynamic program-
ming solutions. Tabling guarantees the termination of certain recursive programs.
For example, consider the following non-tabled program:

reach(X,Y) ?=> edge(X,Y).
reach(X,Y) => reach(X,Z), edge(Z,Y).

% sample data
index (+,-)
edge(a,b). edge(b,c). edge(c,a).

where the predicate edge defines a relation, and the predicate reach defines the
transitive closure of the relation. For a query, such as reach(a,X), the program
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never terminates due to the existence of left-recursion in the second rule. Even if the
rule is converted to right-recursion, the query still might not terminate if the graph
contains cycles.

Tabling also removes redundancy in the execution of recursive programs. Section
1.4.4 showed that the tabled version of the Fibonacci function can be computed in
linear time, while the non-tabled version takes exponential time to compute. As
another example, consider the following problem: Starting in the top left corner of
an N ×N grid, one can either go rightward or downward. How many routes are
there through the grid to the bottom right corner? The following gives a non-tabled
function in Picat for the problem:

route(N,N,_Col) = 1.
route(N,_Row,N) = 1.
route(N,Row,Col) = route(N,Row+1,Col)+

route(N,Row,Col+1).

The function call route(N,1,1) takes exponential time in N, because the same
function calls are repeatedly spawned during the execution, and are repeatedly re-
solved each time that they are spawned. If this function were tabled, then the call
route(N,1,1) would take polynomial time, instead of exponential time.

4.2 Tabling in Picat

The idea of tabling is to memorize calls and their answers, and to use the stored
answers to resolve a call if the same call has occurred before. In Picat, in order to
table all of the calls and answers of a predicate or function, users just need to add
the keyword table before the first rule. For example, the tabled versions of the
reach and route programs are as follows:

table
reach(X,Y) ?=> edge(X,Y).
reach(X,Y) => reach(X,Z), edge(Z,Y).

table
route(N,N,_Col) = 1.
route(N,_Row,N) = 1.
route(N,Row,Col) = route(N,Row+1,Col)+

route(N,Row,Col+1).

% sample data
index (+,-)
edge(a,b). edge(b,c). edge(c,a).

With tabling, all queries to the reach predicate are guaranteed to terminate, and
the function call route(N,1,1) takes only N2 time.
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For some problems, such as planning problems, it is infeasible to table every
answer, because there may be a huge, or even an infinite, number of answers. For
some other problems, such as those that require the computation of aggregates, it is
a waste to table non-contributing answers. Picat allows users to provide table modes
in order to instruct the system about which answers to table. For a tabled predicate,
users can give a table mode declaration in the form (M1,M2, . . . ,Mn), where each Mi
is one of the following: a plus-sign (+) indicating input, a minus-sign (-) indicating
output, min, indicating that the corresponding argument should be minimized, or
max, indicating that the corresponding argument should be maximized. The last
mode, Mn, can be nt, indicating that the corresponding argument will not be tabled.

Input arguments are normally ground. Output arguments, including min and max
arguments, are assumed to be variables. An argument with the mode min or max
is called an objective argument. Only one argument can be an objective to be opti-
mized. As an objective argument can be a compound value, this limit is not essential,
and users can still specify multiple objective variables to be optimized. When a table
mode declaration is provided, Picat only tables one answer for each combination of
input arguments. If there is an objective argument, then Picat only tables one optimal
answer for each combination of input arguments.

A recursive predicate can be understood as a table of ground facts, called a mini-
mal model,1 that can be generated by the rules in the predicate. The minimal model
may contain an infinite number of facts. For a tabled predicate, the same query may
return different answers when under the control of different modes. Consider the
following predicate:

table(+,max)
index (-,-)
p(a,2).
p(a,1).
p(a,3).
p(b,3).
p(b,4).

which is the same as:

table(+,max)
p(A1,A2) ?=> A1=a, A2=2.
p(A1,A2) ?=> A1=a, A2=1.
p(A1,A2) ?=> A1=a, A2=3.
p(A1,A2) ?=> A1=b, A2=3.
p(A1,A2) => A1=b, A2=4.

1 A minimal model is the semantics given to programs that do not contain negation. There are
several proposed definitions for the semantics of logic programs that contain negation. Since none
of the examples presented in this book contains negation, the semantics of negation is not discussed
in this book.
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The query p(a,Y) returns the answer Y=3. If the table mode is changed to
(+,min), then the answer Y=1 is returned for the query. If the table mode is re-
placed by (+,-), then the answer Y=2 is returned, since p(a,2) is the first fact
of p/2. An input argument with the mode (+) is normally ground; however, if it
is not ground, Picat returns an answer based on a different set of facts that can be
generated for the call. Using the above program as an example, the query p(X,Y)
returns the answer X=b, Y=4, which has the maximum value for Y among all of
the facts.

The nt mode should be used with caution. Two types of data can be passed to a
tabled predicate as an nt argument: (1) global data that are the same to every call of
the predicate, and (2) data that are functionally dependent on the input arguments.
When an nt mode exists, an answer is returned for a call as if the nt argument had
not been passed to the call and to the facts in the minimal model of the predicate.

4.3 The Shortest Path Problem

Given a weighted directed graph, a source node, and a destination node, a short-
est path from the source to the destination is a path with the minimum sum of the
weights of the constituent edges. Assume that the predicate edge(X,Y,W) speci-
fies an edge, where W is the weight of the edge from node X to node Y. The predicate
sp(X,Y,Path,W), defined below, states that Path is a path from X to Y with the
minimum total weight W.

table(+,+,-,min)
sp(X,Y,Path,W) ?=>

Path = [(X,Y)],
edge(X,Y,W).

sp(X,Y,Path,W) =>
Path = [(X,Z)|Path1],
edge(X,Z,Wxz),
sp(Z,Y,Path1,W1),
W = Wxz+W1.

Note that whenever the predicate sp/4 is called, the first two arguments must al-
ways be instantiated. For each pair of nodes, the system only stores one path that
has the minimum weight.

The following program finds a shortest path among those that have the minimum
weight for each pair of nodes:

table(+,+,-,min)
sp2(X,Y,Path,WL) ?=>

Path = [(X,Y)],
WL = (Wxy,1),
edge(X,Y,Wxy).

sp2(X,Y,Path,WL) =>
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Path = [(X,Z)|Path1],
edge(X,Z,Wxz),
sp2(Z,Y,Path1,WL1),
WL1 = (Wzy,Len1),
WL = (Wxz+Wzy,Len1+1).

The predicate sp2(X,Y,Path,WL) returns a minimized term WL = (W,Len),
where W is the total weight of a path from X to Y, and Len is the length of the
path. Note that the order of W and Len in the pair is important. If the term would be
(Len,W), then the program would find a shortest path, breaking a tie by selecting
one with the minimum weight.

4.4 The Knapsack Problem

Given a set of items, each of which has a volume and a value, and a sack with a
specified capacity volume, the Knapsack problem is to find a subset of items that
can be put into the sack such that two goals are fulfilled: (1) the total volume of the
items does not exceed the sack’s capacity, and (2) the total value of the items is as
large as possible.

The following is a program that can solve the problem:

table(+,+,-,max)
knapsack(_,C,Sack,Val), C =< 0 =>

Sack = [], Val = 0.
knapsack([_|L],C,Sack,Val) ?=> % Subprob 1

knapsack(L,C,Sack,Val).
knapsack([Item@(IVol,IVal)|L],C,Sack,Val), % Subprob 2

C >= IVol
=>

Sack = [Item|Sack1],
knapsack(L,C-IVol,Sack1,Val1),
Val = Val1 + IVal.

The predicate knapsack(Items,C,Sack,Val) has two input arguments and
two output arguments. As input, it takes a list of Items, and C, the capacity of the
sack. As output, it returns through Sack a list of items to be included in the sack,
and returns through Val the total value of the included items. Each item in Items
is a pair (IVol,IVal), where IVol is the item’s volume and IVal is its value.
For each item, there are two subproblems: one is to leave out the item, while the
other is to include the item. The two subproblems are generated by two separate
rules. Note that the rule for the first subproblem must be nondeterministic. If it were
deterministic, then the last rule would never be applied.

The following gives a different program for the problem:

table
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knapsack([],_,Sack,Val) =>
Sack = [], Val = 0.

knapsack(_,C,Sack,Val), C =< 0 =>
Sack = [], Val = 0.

knapsack([Item@(IVol,IVal)|L],C,Sack,Val),
C >= IVol

=>
knapsack(L,C,Sack1,Val1), % Subprob 1
knapsack(L,C-IVol,Sack2,Val2), % Subprob 2
(Val1 > Val2+IVal ->

Sack = Sack1, Val = Val1
;

Sack = [Item|Sack2], Val = Val2+IVal
).

knapsack([_|L],C,Sack,Val) =>
knapsack(L,C,Sack,Val).

Unlike in the previous program, the two subproblems for an item are generated as
a conjunction of recursive calls. The program takes the responsibility to compare
the solutions of the two subproblems and to return the better solution. Since the
predicate only contains deterministic rules and can only return one answer, table
modes are not necessary.

4.5 The N-Eggs Problem

Given N eggs and a building of H floors, the aim of the N-eggs problem is to de-
termine the highest floor from which an egg will not break when dropped to the
ground, while minimizing the number the number of drops used to determine the
highest floor. All eggs are identical in terms of the shell’s robustness. If an egg
is dropped and does not break, its robustness is not affected, and the egg can be
dropped again. However, once an egg is broken, it can no longer be dropped. This
problem was used in the 2012 Prolog Programming Contest.

The following gives a program to find the minimum number of drops in the worst-
case scenario:

table(+,+,min)
egg(_,0,NTries) => NTries=0.
egg(_,1,NTries) => NTries=1.
egg(1,H,NTries) => NTries=H.
egg(N,H,NTries) =>

between(1,H,L), % choose a floor
egg(N-1,L-1,NTries1), % the egg breaks
egg(N,H-L,NTries2), % the egg survives
NTries is max(NTries1,NTries2)+1.
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The predicate egg(N,H,NTries) takes as input N, the number of eggs, and H, the
number of floors of the building. As output, the predicate returns through NTries
the number of drops. The first three rules describe the base cases: the minimum
number of tries is 0 when H = 0, 1 when H = 1, and H when N = 1. The last
rule, which covers the general case, divides the problem into subproblems. The call
between(1,H,L) nondeterministically selects a floor number L between 1 and
H. There are two possible outcomes when dropping an egg from floor L. If the egg
breaks, then the L-1 floors that are below floor L need to be tried, and the number of
remaining eggs becomes N-1. If the egg does not break, then the H-L floors that are
above floor L need to be tried, and the number of eggs remains the same. Since the
worst-case scenario is considered, the number of tries for L is the maximum number
from the two subproblems. The program returns the minimum of the numbers for
all of the different choices of L.

The program only returns the minimum number of drops for any given values of
N and H. It does not give a plan for these drops. The predicate can be extended with
another argument to return a plan. This extension is left as an exercise.

4.6 Edit Distance

Given a string p, called a pattern, and another string t, called a text, the goal of
the edit-distance problem is to find the shortest sequence of edit operations that
transforms p into t. There are two types of edit operations:

• Insertion: Insert a single character into p.
• Deletion: Delete a single character from p.

The following program encodes the recursive algorithm for the problem:

table(+,+,min)
edit([],[],D) => D=0.
edit([X|P],[X|T],D) => % match

edit(P,T,D).
edit(P,[_|T],D) ?=> % insert

edit(P,T,D1),
D=D1+1.

edit([_|P],T,D) => % delete
edit(P,T,D1),
D=D1+1.

The program matches the text against the pattern from left to right. If the current
character in the pattern matches the current character in the text, then the character
is skipped. If they don’t match, then there are two choices: one is to insert the cur-
rent character from the text into the pattern, while the other choice is to delete the
pattern’s current character.

Note the argument D, which stores the edit distance between strings p and t. Each
insertion and deletion operation increases this distance by 1. Since the objective
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argument min minimizes D, the total number of insertion and deletion operations is
minimized.

The program takes |p|×|t| time, where | | indicates the length of a string. Without
tabling, the program would take exponential time.

4.7 The Longest Increasing Subsequence Problem

The longest increasing subsequence (LIS) problem is: given a sequence of num-
bers, find the longest possible subsequence in which the subsequence’s elements
are sorted in increasing order. The subsequence is not required to be contiguous or
unique. For example, for the list [9,20,8,33,21,50,41,60,70], one LIS is
[9,20,33,50,60,70].

The following gives a program for the problem:

table(+,-,max)
lis([],Sub,Len) => Sub = [], Len = 0.
lis([X|L],Sub,Len) ?=> % Subprob 1: Sub starts here

append(_,L1,L),
lis(L1,Sub1,Len1),
(Sub1 == [] -> true; Sub1 = [Y|_], X < Y),
Sub = [X|Sub1],
Len = Len1+1.

lis([_|L],Sub,Len) => % Subprob 2: Sub starts later
lis(L,Sub,Len).

The predicate lis(L,Sub,Len) takes a list, L, and uses Sub and Len to return
an LIS of L together with its length. In order to get an LIS of a list [X|L], this
program divides the problem into two subproblems: one subproblem, generated by
the second rule, assumes that the LIS begins with X, and the other subproblem, gen-
erated by the third rule, assumes that the LIS does not begin with X. In order to find
an LIS that begins with X, the second rule further divides the problem into finding
an LIS of each of the suffixes of L. The built-in predicate append( ,L1,L) is
used to nondeterministically retrieve a suffix L1 from L. Let Sub1 be an LIS of L1.
For [X|Sub1] to be an LIS of [X|L], Sub1 must either be empty, or must have
a head Y that is greater than X.

For a list of N elements, the above program takes O(N2) time. The following test
program can be used to confirm the time complexity.

main =>
Ns = 500..500..5000, % from 500 to 5000 step 500
member(N,Ns),
initialize_table,
L = [random() : _ in 1..N],
statistics(runtime,_),
lis(L,_Sub,_Len),
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statistics(runtime,[_,Time]),
writeln((N,Time)), fail.

The failure-driven loop iterates through a list of different sizes, and, for each
size, it generates a list of random numbers and calls lis on the list. The built-in
initialize table initializes the table area so that results from prior calls are
not reused for the current call.

Table 4.1 Execution time of lis on random lists
N CPU time

500 0.03
1000 0.12
1500 0.28
2000 0.50
2500 0.79
3000 1.12
3500 1.57
4000 2.03
4500 2.57
5000 3.18

4.8 Tower of Hanoi

The classic 3-peg Tower of Hanoi problem is posed as follows: Given three pegs
and n disks of differing sizes stacked in increasing size order on the first peg, with
the smallest disk on top, the goal is to stack the n disks on the last peg, using the
following rules:

1. Only one disk can be moved at a time.
2. Only the top disk on any peg can be moved.
3. Larger disks cannot be stacked above smaller disks.

This problem can be solved algorithmically with 2n−1 moves.
This section considers a variant of the classic problem, where the initial and goal

configurations are randomly generated. Figure 4.1 gives an instance of the problem.

Fig. 4.1 Tower of Hanoi with configurations
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The problem can be solved by recursively reducing it into subproblems. Let the
disks be numbered 1, 2, . . ., n, from the smallest to the largest. For an initial config-
uration and a goal configuration, if disk n is on the same peg in both configurations,
then the disk is removed. If n = 0 or n = 1, then the problem is solved or can be
easily solved. Otherwise, the problem can be split into three subproblems. Let Pni

be the peg on which disk n resides in the initial configuration, let Png be the peg
on which disk n resides in the goal configuration, and let Po be the other peg that
does not hold disk n in either the initial configuration or the goal configuration. The
original problem can be solved recursively by the following three tasks: (1) move
disks 1, 2, . . ., and n−1 to peg Po; (2) move disk n from peg Pni to peg Png ; (3) move
disks 1, 2, . . ., and n−1 from the configuration generated by the first task to the goal
configuration.

Figure 4.2 gives a program for the 3-peg Tower of Hanoi problem. The pred-
icate hanoi(N,CState,GState,Plan,Len) finds a plan that transforms
the current state CState into the goal state GState. The mode declaration
(+,+,+,-,min) for the predicate indicates that the number of disks and the
states are input, the plan to be found is output, and the length of the plan should
be minimized.

A state is represented as a triplet {Peg1,Peg2,Peg3}, where argument Pegi
stores a descendingly-sorted list of disks on peg i. For example, the following main
predicate can be used to solve the instance shown in Figure 4.1:

main =>
hanoi(3,{[1],[3,2],[]},{[1],[2],[3]},Plan,Len),
writeln(plan=Plan),
writeln(len=Len).

The first rule in Figure 4.2 handles the base case in which the number of disks is
0. The next three rules are for the case in which disk N is already on its final peg and
can be removed from the configurations. The fifth rule handles another base case in
which the number of disks is 1.

The last rule in Figure 4.2 deals with the general case. The call

Pni = disk_on_peg(N,CState)

returns the number of the peg on which disk N resides in CState. The call

Png = disk_on_peg(N,GState)

returns the number of the peg on which disk N resides in GState. The call

Po = other_peg(Pni,Png)

returns the number of the peg that is different from Pni and Png. Let CState1
be the resulting state when removing disk N from CState, and let GState1 be
the resulting state when removing disk N from GState. The rule splits the N-disk
problem into three subproblems. The call

hanoi(N1,CState1,IState,Plan1,Len1)
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table (+,+,+,-,min)
hanoi(0,_CState,_GState,Plan,Len) => Plan=[],Len=0.
hanoi(N,{[N|Pi1],Pi2,Pi3},{[N|Pg1],Pg2,Pg3},Plan,Len) =>

hanoi(N-1,{Pi1,Pi2,Pi3},{Pg1,Pg2,Pg3},Plan,Len).
hanoi(N,{Pi1,[N|Pi2],Pi3},{Pg1,[N|Pg2],Pg3},Plan,Len) =>

hanoi(N-1,{Pi1,Pi2,Pi3},{Pg1,Pg2,Pg3},Plan,Len).
hanoi(N,{Pi1,Pi2,[N|Pi3]},{Pg1,Pg2,[N|Pg3]},Plan,Len) =>

hanoi(N-1,{Pi1,Pi2,Pi3},{Pg1,Pg2,Pg3},Plan,Len).
hanoi(1,CState,GState,Plan,Len) =>

Plan = [$move(Peg1,Peg2)],Len=1,
Peg1 = disk_on_peg(1,CState),
Peg2 = disk_on_peg(1,GState).

hanoi(N,CState,GState,Plan,Len) =>
Pni = disk_on_peg(N,CState),
Png = disk_on_peg(N,GState),
Po = other_peg(Pni,Png),
CState1 = remove_btm_disk(CState,Pni),
N1 = N-1,
IState = {_,_,_},
IState[Po] = [I : I in N1..-1..1],
IState[Pni] = [],
IState[Png] = [],
hanoi(N1,CState1,IState,Plan1,Len1),
GState1 = remove_btm_disk(GState,Png),
hanoi(N1,IState,GState1,Plan2,Len2),
Plan = Plan1 ++ [$move(Pni,Png)|Plan2],
Len = Len1+Len2+1.

remove_btm_disk({[_|P1],P2,P3},1) = {P1,P2,P3}.
remove_btm_disk({P1,[_|P2],P3},2) = {P1,P2,P3}.
remove_btm_disk({P1,P2,[_|P3]},_) = {P1,P2,P3}.

disk_on_peg(N,{[N|_],_,_}) = 1.
disk_on_peg(N,{_,[N|_],_}) = 2.
disk_on_peg(_,_) = 3.

other_peg(1,2) = 3.
other_peg(1,3) = 2.
other_peg(2,1) = 3.
other_peg(2,3) = 1.
other_peg(3,1) = 2.
other_peg(3,2) = 1.

Fig. 4.2 A program for Tower of Hanoi with configurations

finds a plan that transforms CState1 into IState, where IState holds N-1
disks on peg Po, and no disks on pegs Pni and Png. The call

hanoi(N1,IState,GState1,Plan2,Len2)
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finds a plan that transforms IState into GState1. After Plan1 and Plan2 are
found, the step move(Pni,Png) is inserted between these two plans in order to
move disk N from peg Pni to peg Png.

In the worst case, a plan that has an exponential number of steps in N may be
required, causing the program to take exponential time in N. Without tabling, the
program would always take exponential time in the length of the generated plan.
With tabling, the program only takes polynomial time in the length of the generated
plan. The current program treats symmetrical problems as different ones. For exam-
ple, swapping any two of the pegs in both configurations of Figure 4.1 will result
in a completely different problem. The program can be improved by removing this
kind of symmetry.

4.9 The Twelve-Coin Problem

The twelve-coin problem involves twelve coins, one of which is known to be coun-
terfeit, while all of the others are identical genuine coins. It is known that the coun-
terfeit coin weighs differently than a genuine coin, but it is unknown whether the
counterfeit coin is heavier or lighter. The difference between the counterfeit coin
and a genuine coin is only perceivable by weighing them on an old-style two-pan
balance scale. The goal of the problem is to isolate the counterfeit coin with only
three weighings.

A coin can be in one of the following possible states: U (unknown), PH (possi-
bly heavier), PL (possibly lighter), H (heavier), L (lighter), or G (genuine). In the
beginning, the state of every coin is U. The transitions are depicted in the following
diagram:

After a weighing, a U coin may become PH, PL, or G; a PH coin may stay
unchanged or become H or G; and a PL coin may stay unchanged or become L or
G. For example, consider a weighing in which three U coins are put on each side of
the scale. The weighing gives one of the three possible outcomes. If both sides of
the scale are equal, then all six of the U coins become G. If the left side is heavier
than the right side, then the three U coins on the left become PH, and the three U
coins on the right become PL. The third outcome, in which the right side is heavier
than the left side, is similar to the second outcome.

A state is represented by the array {NU,NPH,NPL,NG,NW}, where NU is the
number of unknown coins, NPH is the number of possibly heavier coins, NPL is the
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number of possibly lighter coins, NG is the number of genuine coins, and NW is the
remaining number of weighings. For the twelve-coin problem, the initial state is rep-
resented by {12,0,0,0,3}. In this representation, the coins of the same type are
not distinguishable, and the number of coins of each type is the only concern. This
removal of symmetry significantly reduces the number of possible combinations of
coins for weighing.

Figure 4.3 gives a program for the problem. The program uses the CP solver to
generate different possible weighings for each state. For a state

{NU,NPH,NPL,NG,NW}

assume that the numbers of U, PH, PL, and G coins to be put on the left side of
the scale are, respectively, NU1, NPH1, NPL1, and NG1, and that the numbers of
coins to be put on the right side are, respectively, NU2, NPH2, NPL2, and NG2.
Constraints are used in order to guarantee that: (1) the number of coins of each type
to be put on the scale does not exceed the total number of the type, and (2) both sides
of the scale have an equal number of coins, which must not be zero. The lex le
constraint ensures that the left side is lexicographically less than or equal to the right
side. This constraint removes another type of symmetry.

After a weighing, the original problem is divided into three subproblems. The
first subproblem deals with the outcome in which both sides are equal. Because all
of the coins that were just weighed are known to be genuine coins, the number of
remaining U coins is NU-NU1-NU2, the number of PH coins is NPH-NPH1-NPH2,
the number of PL coins is NPL-NPL1-NPL2, and the number of G coins is the sum
of the original number of G coins plus the number of coins that were just weighed.

The second subproblem results from the outcome that the left side is heavier than
the right side. In this outcome, no coins will remain being U, because all of the U
coins on the left become PH, all of the U coins on the right become PL, and all of
the coins that were not weighed become G. Also, all of the PL coins on the left and
all of the PH coins on the right become G.

The third subproblem, which deals with the outcome that the right side is heavier
than the left side, is similar to the second subproblem.

The following test program can be used to find the minimum number of weigh-
ings, M, needed for a given number of coins N. Table 4.2 gives the results, which
were obtained on PC notebook with 2.4 GHz Intel i5 and 8 GB RAM.

main =>
member(N,[12,20,30,40,50,60,70]),
statistics(runtime,_),
once minW(N,M),
statistics(runtime,[_,Time]),
writeln((N,M,Time)), fail.

minW(N,M) =>
initialize_table,
between(1,N,M),
coin({N,0,0,0,M},_).
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Table 4.2 Minimum number of weighings for N-coins

N M CPU time
12 3 0.00
20 4 0.15
30 4 1.61
40 5 11.81
50 5 52.12
60 5 182.21
70 5 525.07

4.10 Bibliographical Note

Dynamic programming is an important problem-solving method, which is covered
by many textbooks on data structures and algorithms (e.g., [15]). Memoization was
first used in functional programming to speed up the evaluation of recursive func-
tions [41]. OLDT [56] was the first extension of SLD resolution [36] with memoiza-
tion that aimed to cure infinite loops in SLD resolution. OLDT relies on suspension
of calls to compute the fixed points. OLDT was formalized as SLG [12] and imple-
mented in XSB [47]. Initial applications of tabled logic programming can be found
in [64]. These applications attracted more systems to support tabling [48, 68].

Linear tabling [76], which relies on iterative computation of looping calls, was
proposed as a simpler method than SLG for evaluating tabled logic programs. Mode-
directed tabling [22] was designed for solving dynamic programming problems. The
ntmode, which facilitates passing global or functionally dependent data to required
computations, was proposed in [75]. In Picat, ground structured terms in tabled
calls are hash-consed [74] so that common ground terms are only tabled once. This
optimization greatly improves the scalability of dynamic programming solutions in
Picat.

Mode-directed tabling, as implemented in B-Prolog [68], was found useful for
some of the ASP competition problems [11], such as the Sokoban problem [71]
and the 4-peg Tower of Hanoi problem [73]. These successes led to continued re-
search about tailoring tabling to planning. Other dynamic programming problems,
including some of the exercises in this chapter, are located at [17].

4.11 Exercises

1. Modify the N-eggs program from Section 4.5 such that, in addition to returning
the minimum number of drops in the worst scenario, it also returns a plan that
has the form drop(L,Plan1,Plan2), where L is the number of a floor from
which an egg is dropped, Plan1 is a subplan for the case in which the egg
breaks, and Plan2 is a subplan for the case in which the egg does not break.
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2. Modify the LIS program from Section 4.7 to resolve ties as follows: If the given
sequence has more than one possible LIS, then the program will return the LIS
whose sum is largest.

3. Write a function that takes a list of real numbers [E1, . . ., En] and returns the
non-empty contiguous sublist [Ei, . . ., E j] that has the largest possible sum.2

4. Modify the function from Exercise 3 to work with two-dimensional lists. Given
a two-dimensional list of real numbers, with dimensions m and n, return the non-
empty contiguous two-dimensional sublist that has the largest possible sum.

5. Write a program to solve the box stacking problem.2 Given a list of n rectangu-
lar 3-D boxes, each of which has a Height, a Width, and a Depth that are
specified as real numbers, the goal is to make a stack of boxes that is as tall as
possible. However, a box can only be put on top of another box if the dimensions
of the 2-D base of the lower box are each strictly larger than those of the 2-D
base of the higher box. Each box can be rotated so that any side functions as its
base. There can be multiple boxes with the same dimensions.

6. Write a program to partition a set of n natural numbers into two non-empty sub-
sets in a way that minimizes |S1 − S2|, where S1 and S2 are the sums of the
elements in each of the two subsets2.

7. Consider a row of n coins of given values v1 . . . vn, where n is even. You are
playing a game in which you alternate turns with an opponent. In each turn, a
player selects either the first or last coin from the row, permanently removes it
from the row, and receives the value of the coin. Write a program to determine
the maximum amount of money that you can win if you move first.

8. Write a program to solve the all-pairs shortest paths problem. Given a weighted
directed graph of n nodes that is defined by a series of predicates edge(X,Y,W),
as described in Section 4.3, the program returns an n× n list, L, where each
L[X,Y] contains the weight of the shortest path from node X to node Y.

9. Rewrite the program shown in Figure 4.2 for the 3-peg Tower of Hanoi problem
to allow symmetrical problems to share solutions.

10. Consider the 4-peg Tower of Hanoi problem with given initial and goal config-
urations. This problem can be solved by using dynamic programming, similarly
to how the 3-peg version was solved in Section 4.8. For a problem with n disks,
if disk n is on the same peg in both the current and goal configurations, then the
disk can be removed from consideration. Otherwise, if n > 1, the Frame-Stewart
algorithm can be used to divide the problem into the following subproblems:

a. Move the Mid topmost disks to another, intermediate, peg (which is not the
destination peg), using all 4 pegs.

b. Move the n−Mid remaining disks to the destination peg using the 3 remaining
pegs.

c. Move the Mid disks from their current peg to the destination peg, using all 4
pegs.

Write a program to solve the 4-peg Tower of Hanoi problem.

2 Taken with permission from
http://people.cs.clemson.edu/˜bcdean/dp practice.
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import cp.

main =>
coin({12,0,0,0,3},Plan),
writeln(Plan).

table(+,-)
coin({0,0,0,_,_},Plan) => Plan=nil.
coin({0,1,0,_,_},Plan) => Plan=nil.
coin({0,0,1,_,_},Plan) => Plan=nil.
coin(State@{NU,NPH,NPL,NG,NW},Plan),NW>0 =>

Plan = $weigh(State,
{NU1,NPH1,NPL1,NG1},
{NU2,NPH2,NPL2,NG2},Plan1,Plan2,Plan3),

[NU1,NU2] :: 0..NU,
[NPH1,NPH2] :: 0..NPH,
[NPL1,NPL2] :: 0..NPL,
[NG1,NG2] :: 0..NG,
NU1+NU2 #=< NU,
NPH1+NPH2 #=< NPH,
NPL1+NPL2 #=< NPL,
NG1+NG2 #=< NG,
LSide #= NU1+NPH1+NPL1+NG1,
RSide #= NU2+NPH2+NPL2+NG2,
lex_le([NU1,NPH1,NPL1,NG1],[NU2,NPH2,NPL2,NG2]),
LSide #> 0,
RSide #> 0,
LSide #= RSide, % equal number of coins on both sides
NW1 = NW-1,
solve([NU1,NU2,NPH1,NPH2,NPL1,NPL2,NG1,NG2]),
O1 = {NU-NU1-NU2, % Outcome1: both sides are equal

NPH-NPH1-NPH2,
NPL-NPL1-NPL2,
NG+NU1+NPH1+NPL1+NU2+NPH2+NPL2,
NW1},

coin(O1,Plan1),
O2 = {0, % Outcome2: left side is heavier

NPH1+NU1,
NPL2+NU2,
NG+(NPH-NPH1)+(NPL-NPL2)+(NU-NU1-NU2),
NW1},

coin(O2,Plan2),
O3 = {0, % Outcome3: left side is lighter

NPH2+NU2,
NPL1+NU1,
NG+(NPH-NPH2)+(NPL-NPL1)+(NU-NU1-NU2),
NW1},

coin(O3,Plan3).

Fig. 4.3 A Picat program for the Twelve-Coin problem



Chapter 5
From Dynamic Programming to Planning

Abstract Planning can be treated as dynamic programming, for which tabling has
been shown to be effective. Picat provides a module, named planner, which is
based on tabling, but provides a level of abstraction that hides tabling from users.
This chapter focuses on depth-unbounded search predicates in the planner mod-
ule, and demonstrates several application examples.

5.1 Introduction

Planning means finding a sequence of activities required to achieve a desired goal.
Planning is indispensable for many tasks, such as logistics, robotics, and military
operations. Many puzzles, such as the fifteen sliding puzzle and the Rubik’s cube
puzzle, are planning problems. The classic planning problem is the most primitive
form of planning. Given an initial state, a description of the final states, and a set of
possible actions, the classic planning problem is to find a plan that transforms the
initial state to a final state.

The classic planning problem can be viewed as a path-finding problem over an
implicitly-specified graph. The tabled program given in Chapter 4 for the shortest-
path problem can be generalized for classic planning. The following shows the
framework:

table (+,-,min)
path(S,Plan,Cost),final(S) =>

Plan=[],Cost=0.
path(S,Plan,Cost) =>

action(S,NextS,Action,ACost),
path(NextS,Plan1,Cost1),
Plan = [Action|Plan1],
Cost = Cost1+ACost.

95
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The call path(S,Plan,Cost) binds Plan to an optimal plan that can transform
state S to a final state. The predicate final(S) succeeds if S is a final state, and the
predicate action/4 encodes the set of actions in the problem. For an initial state,
the predicates final/1 and action/4 constitute a state space. Picat performs
depth-first tabled search in the state space, meaning that Picat tables every state that
is encountered during the search in order to avoid exploring a state more than one
time.

Picat provides a module, named planner, which provides a level of abstraction
that hides tabling from users. For a planning problem, in order to find a plan or an
optimal plan, users only need to define the predicates final/1 and action/4,
and call one of the planner module’s search predicates, passing an initial state
as a parameter. In addition to performing depth-unbounded search, as described
in the framework above, the planner module also provides predicates for per-
forming depth-bounded search, such as iterative-deepening and branch-and-bound.
This chapter describes depth-unbounded search predicates in the planner mod-
ule, together with their implementations and several application examples. Chapter
6 covers depth-bounded search and heuristic search for planning.

5.2 The planner Module: Depth-Unbounded Search

Picat’s plannermodule provides predicates and functions for specifying and solv-
ing planning problems. In order to solve a planning problem, a program must import
the planner module and provide the following two global predicates:

• final(S): This predicate succeeds if S is a final state.
• action(S,NextS,Action,ACost): This predicate encodes the state transition

diagram of a planning problem. State S can be transformed to NextS by perform-
ing Action. The cost of Action is ACost, which must be non-negative. If the plan’s
length is the only interest, then ACost=1. Note that the assignment operator :=
cannot be used to update variable S to produce NextS.

The final and action predicates are called by the planner. The action predi-
cate specifies the precondition, effect, and cost of each of the actions. This predicate
is normally defined with nondeterministic pattern-matching rules. The planner tries
actions in the order in which they are specified. When a non-backtrackable rule is
applied to a call, the remaining rules will be discarded for the call.

The following describes the predicates in the planner module that perform
depth-unbounded search:

• best plan unbounded(S,Limit,Plan,PlanCost): This predicate, if it suc-
ceeds, binds Plan to a plan that can transform state S to a final state. PlanCost is
the cost of Plan. PlanCost cannot exceed Limit, which is a given non-negative
integer. The argument PlanCost is optional. If it is omitted, then the predicate
does not return the plan’s cost. The Limit can also be omitted. In this case, the
predicate assumes the cost limit to be 268435455.
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best_plan_unbounded(S,Limit,Plan,PlanCost) =>
best_plan_unbounded_aux(S,Plan,PlanCost),
PlanCost =< Limit.

table (+,-,min)
best_plan_unbounded_aux(S,Plan,PlanCost),final(S) =>

Plan = [],
PlanCost = 0.

best_plan_unbounded_aux(S,Plan,PlanCost) =>
action(S,NextS,Action,ACost),
best_plan_unbounded_aux(NextS,Plan1,PlanCost1),
Plan = [Action|Plan1],
PlanCost = PlanCost1+ACost.

%%%
plan_unbounded(S,Limit,Plan,PlanCost) =>

IPlan = {Limit,[],0},
catch(plan_unbounded_aux(S,Plan,PlanCost,IPlan),

(Plan,PlanCost), true).

table (+,-,min,nt)
plan_unbounded_aux(S,Plan,PlanCost,_),

final(S)
=>

Plan = [],
PlanCost = 0.

plan_unbounded_aux(S,Plan,PlanCost,{Limit,IPlan,IPlanCost}) =>
action(S,NextS,Action,ACost),
Inherited1 = {Limit-ACost,

[Action|IPlan],
IPlanCost+ACost},

plan_unbounded_aux(NextS,Plan1,PlanCost1,Inherited1),
Plan = [Action|Plan1],
PlanCost = PlanCost1+ACost,
(PlanCost =< Limit ->

throw((IPlan.reverse()++Plan,IPlanCost+PlanCost))
;

true
).

Fig. 5.1 The implementation of the depth-unbounded search predicates

• plan unbounded(S,Limit,Plan,PlanCost): This predicate is the same as
the best plan unbounded predicate, except that it terminates the search
once it finds a plan whose cost does not exceed Limit.
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5.3 The Implementation of Depth-Unbounded Search

Figure 5.1 shows Picat’s implementation of the depth-unbounded search predicates.
For a call to best plan unbounded, Picat explores a path until it encounters
either a final state, a dead-end state in which no action can be applied, or a state that
has occurred before. When Picat encounters a dead-end or a recurring state, it back-
tracks. Picat tables all of the encountered states so that a state that occurs in multiple
paths in the search space is only expanded once during each round of evaluation of
the call. Picat keeps replacing existing plans for the tabled states with better plans
until a round of search fails to find any better plans. Note that the argument Limit is
not used to limit the depth of the search. Instead, Limit is compared with PlanCost
after an optimal plan has been found. During depth-unbounded search, once a state
has failed, it will not be explored again, whether it occurs in the current round or in
subsequent rounds.

In the implementation of plan unbounded, the following array is passed from
a state to the next state:

{Limit,IPlan,IPlanCost}

Limit is the maximum amount of resources that can be consumed by future ac-
tions. IPlan is a partial plan that is inherited from the parent. IPlanCost is the
total cost of IPlan. Initially, Limit is the limit that is given by the user, IPlan is
[], and IPlanCost is 0. The array is passed down as an nt argument. Therefore, it
is not used in variant checking. Two calls to plan unbounded aux are variants
if the states that they represent (i.e., the first arguments of the calls) are the same.
Once a plan is found for the initial state whose cost does not exceed the limit, the
program throws the plan to the initial call as an exception, terminating the search.

5.4 Missionaries and Cannibals

The missionaries and cannibals problem is a classic AI planning problem. Three
missionaries and three cannibals come to the southern bank of a river and find a
boat that holds up to two people. If the cannibals ever outnumber the missionaries
on either bank, the missionaries will be eaten. Find a plan to move them to the other
bank of the river.

Figure 5.2 gives a program for the problem. A state is represented as a list of
the form [M,C,Bank]. Bank is the bank of the river where the boat is currently
located. M and C are respectively the number of missionaries and the number of
cannibals on the Bank of the river. Initially, all of the missionaries and cannibals,
as well as the boat, are on the southern bank of the river.

The final predicate gives the condition for the final state. The current state is
final if the boat and all six people are on the northern bank of the river.

The action predicate is defined with a single rule. For the current state
[M,C,Bank], a number of missionaries, BM, is chosen from the range 0..M, and



5.5 Klotski 99

import planner.

main =>
best_plan_unbounded([3,3,south],Plan),
foreach (Step in Plan)

println(Step)
end.

final([3,3,north]) => true.

action([M,C,Bank],NextS,Action,Cost) =>
member(BM,0..M),
member(BC,0..C),
BM+BC > 0, BM+BC =< 2,
OppBank = opposite(Bank),
Action = $cross(BM,BC,OppBank),
Cost = 1,
NewM1 = M-BM,
NewC1 = C-BC,
NewM2 = 3-NewM1,
NewC2 = 3-NewC1,
if NewM1 !== 0 then % missionaries are safe

NewM1 >= NewC1
end,
if NewM2 !== 0 then

NewM2 >= NewC2
end,
NextS = [NewM2,NewC2,OppBank].

opposite(south) = north.
opposite(north) = south.

Fig. 5.2 A program for the Missionaries and Cannibals problem

a number of cannibals, BC, is chosen from the range 0..C to cross the river. For the
crossing to be valid, the total number of people on the boat must either be 1 or 2.
Furthermore, if there is a missionary on either bank, the cannibals cannot outnum-
ber the missionaries. After crossing, the boat comes to the opposite bank, and the
program updates the numbers of missionaries and cannibals on each bank.

The program, using Picat version 1.3, finds an optimal plan of 11 steps for the
problem in 0.04 s on an Intel-i5 PC.

5.5 Klotski

Klotski is a sliding puzzle. There are one 2× 2 piece, one 2× 1 piece, four 1× 2
pieces, and four 1× 1 pieces. Initially, the pieces are placed on a 4× 5 board, as
shown in Figure 5.3. After the pieces are placed, the board has two empty spaces.
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The goal of the game is to slide the 2×2 piece to the exit, so that the 2×2 piece can
be slid out through the exit during the next move. No other pieces can be removed
from the board. Pieces must be slid horizontally or vertically to empty spaces. The
location of a piece on the board is represented as (R,C), where R is the number
of the row and C is the number of the column of upper-left square of the piece.
Therefore, the 2×2 piece is at the exit if its upper-left corner is in position (4,2).

Fig. 5.3 Klotski

Figure 5.4 gives a Picat program for the puzzle. A state is represented as a pair
{Spaces,Pieces}, where Spaces is a sorted list of locations of the two empty
spaces, and Pieces is a sorted list of pieces. Each piece is represented as a pair,
where the first element is the size of the piece, and the second element is the location
of the piece. In the move piece predicate, this pair corresponds to the second and
third arguments, D@(W,H) and P@(R,C). Recall that a pattern that is preceded by
@ denotes an as-pattern. The as-pattern D@(W,H) is the same as the pattern (W,H),
except that D is made to reference the term that matched the pattern.

The initial state, shown in Figure 5.3, can be defined as follows:

initial(S) =>
S = {[(5,2), (5,3)], % empty spaces

sort([{(2,2),(1,2)}, % one 2 x 2 piece
{(2,1),(3,2)}, % one 2 x 1 piece
{(1,2),(1,1)}, % four 1 x 2 pieces
{(1,2),(3,1)},
{(1,2),(1,4)},
{(1,2),(3,4)},
{(1,1),(5,1)}, % four 1 x 1 pieces
{(1,1),(4,2)},
{(1,1),(4,3)},
{(1,1),(5,4)}])}.

A state is final if the 2× 2 piece is at location (4,2). This condition is repre-
sented by member((2,2),(4,2),Pieces). Note that the condition represents



5.5 Klotski 101

import planner.

main =>
initial(S0),
best_plan_unbounded(S0,Plan),
foreach (Step in Plan)

println(Step)
end,
println(len=length(Plan)).

final({_,Pieces}), member({(2,2),(4,2)},Pieces) => true.

action({Spaces,Pieces},NextS,Action,Cost) =>
Cost = 1,
select({Dim,Pos},Pieces,Pieces1),
move_piece(Spaces,Dim,Pos,NSpaces,NPos,Action),
NextS = {NSpaces,insert_ordered(Pieces1,{Dim,NPos})}.

move_piece(Spaces,D@(W,H),P@(R,C),NSpaces,NP,Action) ?=>
Action = $move(D,P,left),
C1 = C-1, NP = (R,C1),
if H==1 then

select((R,C1),Spaces,SpacesR),
NSpaces = insert_ordered(SpacesR,(R,C1+W))

else
Spaces = [(R,C1),(R+1,C1)],
NSpaces = [(R,C1+W),(R+1,C1+W)]

end.
move_piece(Spaces,D@(W,H),P@(R,C),NSpaces,NP,Action) ?=>

Action = $move(D,P,right),
C1 = C+1, NP = (R,C1),
if H==1 then

select((R,C+W),Spaces,SpacesR),
NSpaces = insert_ordered(SpacesR,(R,C))

else
Spaces = [(R,C+W),(R+1,C+W)],
NSpaces = [(R,C),(R+1,C)]

end.
move_piece(Spaces,D@(W,H),P@(R,C),NSpaces,NP,Action) ?=>

Action = $move(D,P,up),
R1 = R-1, NP = (R1,C),
if W==1 then

select((R1,C),Spaces,SpacesR),
NSpaces = insert_ordered(SpacesR,(R1+H,C))

else
Spaces = [(R1,C),(R1,C+1)],
NSpaces = [(R1+H,C),(R1+H,C+1)]

end.
move_piece(Spaces,D@(W,H),P@(R,C),NSpaces,NP,Action) =>

Action = $move(D,P,down),
R1 = R+1, NP = (R1,C),
if W==1 then

select((R+H,C),Spaces,SpacesR),
NSpaces = insert_ordered(SpacesR,(R,C))

else
Spaces = [(R+H,C),(R+H,C+1)],
NSpaces = [(R,C),(R,C+1)]

end.

Fig. 5.4 A program for Klotski
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multiple final states, because although the 2× 2 square is required to be moved to
(4,2), the other pieces can be at any locations.

The action predicate is defined by one rule. First, the rule nondeterministically
selects a piece. Then, it calls move piece to move the piece. A piece can be moved
in one of four directions: up, down, left, and right. There must be space for the piece
to move in the chosen direction. For example, consider the first move piece rule,
which moves a piece left from (R,C) to (R,C1), where C1 = C-1. If the height
of the piece is 1, meaning that H == 1, then select checks that one of the empty
spaces is at (R,C1). After the move, the new location of the piece is (R,C1), and
the empty space changes to location (R,C1+W), where W is the width of the piece.
Otherwise, if the height of the piece is 2, then the rule checks that the two empty
spaces are vertically adjacent to the left edge of the piece, at locations (R,C1)
and (R+1,C1), respectively. After the move, the new locations of the two empty
spaces are (R,C1+W) and (R+1,C1+W), respectively.

The program, using Picat version 1.3, finds an optimal plan of 116 moves in 15
s on an Intel-i5 PC. As sliding a piece to an empty space and then sliding it to the
next empty space constitutes two moves in the encoding, the solution lists more
steps than the known 81-step minimum-length solution for the puzzle.

5.6 Sokoban

Sokoban is a type of transport puzzle, in which the player, named sokoban (which
means “warehouse-keeper” in Japanese), must push all the boxes on the floor to
the designated storage locations. Only one box may be pushed at a time, and boxes
cannot be pulled. This problem has been shown to be NP-hard, and has raised great
interest because of its relation to robot planning.

Fig. 5.5 A Sokoban instance and its reverse

In standard Sokoban, the player solves the puzzle by pushing boxes. However,
boxes can get stuck after being pushed to certain locations, resulting in unsolvable
configurations. For this reason, it is easier to solve the puzzle backward from the
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goal state to the initial state by pulling boxes instead of pushing them. Any plan
for the reversed puzzle can be converted to a plan for the original puzzle. Although
boxes can still get stuck, reverse Sokoban has fewer unsolvable configurations than
standard Sokoban. Figure 5.5 gives a problem instance and its reverse.

The floor configuration of an instance is defined by the following static facts:

• size(NRows,NCols): The floor has NRows rows and NCols columns.
• wall(R,C): The square at (R,C) is a wall. Only interior walls need to be spec-

ified. The boundary is assumed to have walls. Neither boxes nor the sokoban
can enter squares that are occupied by walls.

• goal(R,C): The square at (R,C) is a goal location.

A state is represented by a pair of the form {SoLoc,BoxLocs}, where SoLoc
is the sokoban’s current location, and BoxLocs is a sorted list of the boxes’ loca-
tions. This representation automatically removes box symmetries. Since the repre-
sentation does not carry the identities of boxes, two configurations are represented
as the same state if they are not distinguishable by the boxes’ locations.

For an instance, the main predicate loads the static facts into the system, and
calls the planner on an initial state. For the reversed Sokoban instance that is shown
in Figure 5.5, the main predicate is the following:

main =>
Facts = $[size(7,7),

wall(2,2), wall(2,3), wall(3,5),
wall(5,5), goal(3,3), goal(4,4),
goal(4,5), goal(6,5)],

cl_facts(Facts,$[wall(+,+), goal(+,+)]),
SoLoc = (2,4),
BoxLocs = [(2,6),(3,6),(5,2),(6,6)],
best_plan_unbounded({SoLoc,BoxLocs},Plan),
foreach (Step in Plan)

println(Step)
end.

The built-in cl facts loads the facts into the system, assuming that all of the
arguments of calls to wall and goal are ground.

Figure 5.6 gives definitions of the final and action predicates. A state is
final if every location in BoxLocs is a goal location.

final({_SoLoc,BoxLocs}) =>
foreach((R,C) in BoxLocs)

goal(R,C)
end.

Note that the condition represents multiple final states, because although the stones
must be pushed to the designated goal locations, the sokoban himself can be at
any location.
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The actions are defined by two rules. The first rule of action/4 selects a box
that is next to the sokoban, chooses a direction and an empty square in that direc-
tion, and pulls the box to the empty square. The neib(SoLoc,BoxLoc,Dir)
predicate finds the BoxLoc that is next to SoLoc in the direction Dir. The
select(BoxLoc,BoxLocs,BoxLocs1) predicate ensures that BoxLoc is an
element in the list BoxLocs, and removes BoxLoc from BoxLocs, producing
BoxLocs1. In order to pull the box at BoxLoc in OppDir, which is the oppo-
site direction of Dir, the sokoban must find at least one empty square behind
him in the direction OppDir. The choose move destination predicate re-
turns an empty location behind the sokoban. This predicate is nondeterminis-
tic. Upon backtracking, this predicate returns another empty location behind the
sokoban. After pulling the box at BoxLoc to NewBoxLoc, the sokoban moves
to NewSoLoc. The second rule of action/4 lets the sokoban walk to a new
location.

For the reversed instance that is shown in Figure 5.5, the program, using Picat
version 1.3, finds an optimal plan of 88 steps in 0.2 s on an Intel-i5 PC. This plan
can be converted to a plan of 86 steps for the original instance. The converted plan
has two fewer steps, since the two walking moves are not necessary after the goal
state has been achieved.
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import planner.

final({_SoLoc,BoxLocs}) =>
foreach ((R,C) in BoxLocs)

goal(R,C)
end.

action({SoLoc,BoxLocs},NextS,Action,Cost) ?=> % pull a box
NextS = {NewSoLoc,NewBoxLocs},
Action = $pull(BoxLoc,NewBoxLoc,OppDir), Cost=1,
neib(SoLoc,BoxLoc,Dir),
select(BoxLoc,BoxLocs,BoxLocs1),
OppDir = opposite(Dir),
neib(SoLoc,PrevLoc,OppDir),
not member(PrevLoc,BoxLocs1),
choose_move_destination(PrevLoc,BoxLocs1,OppDir,NewSoLoc),
neib(NewSoLoc,NewBoxLoc,Dir),
insert_ordered(BoxLocs1,NewBoxLoc) = NewBoxLocs.

action({SoLoc,BoxLocs},NextS,Action,Cost) => % walk
NextS = {NewSoLoc,BoxLocs},
Action = $walk(SoLoc,NewSoLoc,Dir), Cost=1,
neib(SoLoc,NextLoc,Dir),
not member(NextLoc,BoxLocs),
choose_move_destination(NextLoc,BoxLocs,Dir,NewSoLoc).

opposite(up) = down.
opposite(down) = up.
opposite(left) = right.
opposite(right) = left.

table
neib((R,C),Next,Dir) =>

Next = (R1,C1),
Neibs = [(R-1,C,up),(R+1,C,down),(R,C-1,left),(R,C+1,right)],
member((R1,C1,Dir),Neibs),
size(NRows,NCols),
R1 > 1, R1 < NRows,
C1 > 1, C1 < NCols,
not wall(R1,C1).

choose_move_destination(Loc,_BoxLocs,_Dir,Dest) ?=> Dest = Loc.
choose_move_destination(Loc,BoxLocs,Dir,Dest) =>

neib(Loc,NextLoc,Dir),
not member(NextLoc,BoxLocs),
choose_move_destination(NextLoc,BoxLocs,Dir,Dest).

Fig. 5.6 A program for reversed Sokoban
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5.7 Bibliographical Note

PLANNER [25], which was designed as “a language for proving theorems and ma-
nipulating models in a robot”, is perceived as the first logic programming language.
Planning has been an important problem domain for Prolog [33, 62]. Planning is
also an important application domain of answer set programming [9, 20, 35], which
belongs to the planning-as-satisfiability approach [30]. The planner module of Pi-
cat is motivated by several successful applications of tabled logic programming for
planning [5, 69, 71].

The Planning Domain Definition Language (PDDL) is the de facto standard
planning language used by the planning community [39]. PDDL was inspired by
STRIPS [19], and was made popular by the International Planning Competition. A
detailed description of PDDL and its extensions, including the Hierarchical Task
Network (HTN), can be found in [21].

As a modeling language for planning, Picat differs from PDDL and ASP in the
following aspects: (1) Picat allows the use of structures to represent states; (2) Picat
supports explicit commitment and nondeterministic actions, which enables users to
have better control over action applications; (3) as presented in Chapter 6, Picat pro-
vides facilities for describing domain knowledge and heuristics for pruning search
space. A PDDL encoding can be converted to Picat in a straightforward manner.
Nevertheless, the resulting encoding can hardly be efficient. Picat’s modeling and
solving features need to be fully exploited in order to find efficient encodings [4, 70].

The idea to solve Sokoban by reversing the puzzle is discussed in [55].

5.8 Exercises

1. Write a program to solve the water jugs problem. There are an empty 3-gallon
jug and an empty 5-gallon jug. The jugs can be filled from a fountain of water,
water can be poured between the two jugs, and the jugs can be emptied. The
problem is to fill one of the jugs with exactly 4 gallons of water.

2. Write a program to solve the bridge-crossing problem. Four people come to a
river during the night. There is a narrow bridge, but it can only hold two people
at a time. They have one torch and, because it’s night, the torch has to be used
when crossing the bridge. Person A can cross the bridge in one minute, person B
in two minutes, person C in five minutes, and person D in eight minutes. When
two people cross the bridge together, they must move at the slower person’s pace.
Find an optimal plan that requires the shortest time for the four people to cross
the bridge.

3. Write a program to solve the wolf-chicken-feed problem. A farmer must transport
a wolf, a chicken, and a bag of chicken feed across a river. However, the boat can
only hold two passengers, and the farmer is the only one who can row the boat
across the river. (The bag of feed is also considered a passenger.) If the wolf is
left alone with the chicken, then the wolf will eat the chicken. If the chicken is
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left alone with the bag of feed, then the chicken will eat the bag of feed. Find a
plan to move them to the other side of the river.

4. Write a program to solve the tile-swapping puzzle.1 The puzzle is a 3× 3 board
consisting of numbers from 1 to 9. Given an initial state, the objective of the
puzzle is to swap the tiles until the goal state is reached. The following gives an
initial state and the goal state:

7 3 2
4 1 5
6 8 9

1 2 3
4 5 6
7 8 9

Two adjacent tiles can be swapped if their sum is a prime number. Two tiles are
considered adjacent if they have a common edge.

5. Write a program to solve the moving coins problem.1 There is a line with 1000
cells numbered sequentially from 1 to 1000 from. N (N < 1000) coins are placed
on the line. Coin i is placed at cell Xi, and no two coins are placed at the same
cell. Bob would like to move the coins to the N leftmost cells of the line. To do
this, he is allowed to take a coin from any cell T and move it to cell T − j, where
j is an integer between 1 and K (1≤K ≤ 1000), inclusive. This action is possible
only if:

• cell T − j actually exists and doesn’t contain a coin;
• each of the cells T − j+1, . . ., T −1 contains a coin.

Find a shortest plan for Bob to achieve his goal for two input integers N and K.
6. Write a program to solve the white knight and black pawns problem. There is a

chessboard of size N×N. A white knight and several black pawns are located
on the board. The knight can move similarly to the normal knight in the game
of chess. This means that the knight can either move (i) one horizontal space
and two vertical spaces, or (ii) two horizontal spaces and one vertical space. The
mission of the knight is to capture as many black pawns as possible in a given
number of moves.

7. Change the reverse Sokoban program shown in Figure 5.6 as follows:

(a) Modify the main predicate so that it accepts a description of a standard
Sokoban instance, and then automatically converts the description to reverse
Sokoban.

(b) After a plan for reverse Sokoban is found, convert it to a plan for standard
Sokoban, using pushes instead of pulls.

8. Although boxes in reverse Sokoban are less likely to get stuck than in standard
Sokoban, the sokoban can get stuck. Figure 5.7 gives an unsolvable configura-
tion in which the sokoban is stuck. Improve the program shown in Figure 5.6
to avoid producing this kind of unsolvable configuration.

1 This problem is adapted from codechef.com.
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Fig. 5.7 An unsolvable configuration in reverse Sokoban



Chapter 6
Planning with Resource-Bounded Search

Abstract In addition to depth-unbounded search predicates, Picat’s planner also
provides resource-bounded search predicates. Resource-bounded search amounts
to utilizing tabled states and their resource amounts to effectively decide when a
state should be expanded and when a state should fail. Picat’s planner provides
iterative-deepening and branch-and-bound search predicates for finding optimal
plans. Picat’s planner also supports heuristic search. A state should fail if its heuris-
tic estimate of the cost to reach a final state is greater than its resource amount. This
chapter describes resource-bounded search predicates in the planner module, and
demonstrates several application examples.

6.1 Introduction

For many planning problems, depth-unbounded depth-first search does not work if
the search space is huge, with few dead-ends or few recurring states. Consider the
Deadfish problem. Deadfish is a simple programming language that has a single
accumulator to store data, and four instructions that modify the accumulator. The
accumulator always starts with 0. The four instructions that modify the accumulator
are: i (increment), d (decrement), s (square), and o (output). The Deadfish problem
is to find the shortest sequence of instructions that produces a given non-negative
number. Depth-unbounded search does not work for this problem since the search
space is infinite, meaning that a path in the search space can go infinitely deep.

Picat’s planner module provides predicates for performing resource-bounded
search. In resource-bounded search, each state carries a resource amount. States and
their resource amounts are tabled in such a way that a state is only expanded if: (i)
the state is new and its resource amount is non-negative, or (ii) the state has previ-
ously failed, but the current occurrence has a higher resource amount than earlier
occurrences. Resource-bounded search avoids unfruitful exploration of paths that
are deemed to fail. Depth-bounded search is a special form of resource-bounded
search in which plan lengths are limited.

109
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In addition to the basic predicate that performs resource-bounded search, Picat’s
planner provides predicates that perform iterative-deepening and branch-and-bound
search for finding optimal plans. Picat’s planner also supports heuristic search. After
a new state is generated, a decision can be made about whether to explore the state
or fail the state, based on a heuristic value for the state and the current resource
amount.

This chapter describes the resource-bounded search predicates in the planner
module, together with their implementations and several application examples.

6.2 The planner Module: Resource-Bounded Search

The planner module provides the following built-ins for resource-bounded and
heuristic search:

• plan(S,Limit,Plan,PlanCost): This predicate searches for a plan by per-
forming resource-bounded search. The predicate binds Plan to a plan that can
transform state S to a final state that satisfies the condition given by final/1.
PlanCost is the cost of Plan. PlanCost cannot exceed Limit, which is a given
non-negative integer. The arguments Limit and PlanCost are optional.

• best plan(S,Limit,Plan,PlanCost): This predicate finds an optimal plan
by using iterative-deepening. The best plan predicate calls the plan/4 pred-
icate to find a plan, using 0 as the initial cost limit and gradually relaxing the cost
limit until a plan is found.

• best plan bb(S,Limit,Plan,PlanCost): This predicate finds an optimal
plan by using branch-and-bound. First, the best plan bb predicate calls
plan/4 to find a plan. Then, it tries to find a better plan by imposing a stricter
limit. This step is repeated until no better plan can be found. Then, this predicate
returns the best plan that was found.

• current resource() = Limit: This function returns the resource limit argu-
ment of the latest call to plan/4. In order to retrieve the Limit argument, the
implementation has to traverse the call-stack until it reaches a call to plan/4.
The current resource function can be used to check against a heuristic
value. If the heuristic estimate of the cost to travel from the current state to a
final state is greater than the resource limit, then the current state should fail. If
the estimated cost never exceeds the real cost, meaning that the heuristic function
is admissible, then the optimality of solutions is guaranteed.

Solving tip: for a planning problem, the user has to decide whether to use depth-
unbounded search or resource-bounded search, and if resource-bounded search is
employed to find an optimal plan, then the user has to decide whether iterative-
deepening or branch-and-bound should be used. In general, this decision requires
experimentation with different search predicates.
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plan(S,Limit,Plan,PlanCost) =>
IPlan = {Limit,[],0},
catch(plan_bounded_aux(S,IPlan), (Plan,PlanCost), true).

table (+,nt)
plan_bounded_aux(S,{Limit,IPlan,IPlanCost}),

final(S)
=>

throw((IPlan.reverse(), IPlanCost)).
plan_bounded_aux(S,{Limit,IPlan,IPlanCost}) =>

action(S,NextS,Action,ACost),
Limit1 = Limit-ACost,
Limit1 >= 0,
Inherited1 = {Limit1,

[Action|IPlan],
IPlanCost+ACost},

plan_bounded_aux(NextS,Inherited1).

Fig. 6.1 The implementation of plan/4

6.3 The Implementation of Resource-Bounded Search

Figure 6.1 sketches Picat’s implementation of the predicate plan/4. As in the im-
plementation of plan unbounded, the following array is passed from a state to
the next state as an nt argument:

{Limit,IPlan,IPlanCost}

Unlike in the implementation of plan unbounded/4 that is shown in Figure 5.1,
where the nt argument is not tabled at all, Picat stores the Limit argument of each
failed call to plan bounded aux,1 and uses this information to decide whether
the same state should fail when it recurs.

The first rule of plan bounded aux throws the inherited plan and its cost as
an exception if final(S) succeeds. The exception will be caught by the catch
call in the rule body of plan/4.

The second rule of plan bounded aux calls action/4 to select an action,
which produces a new state, NextS. Then, the rule computes the new resource limit,
Limit1, by subtracting the cost of the selected action from Limit. If Limit1
>= 0 succeeds, then the rule continues with the tabled search by recursively call-
ing plan bounded aux on the new state NextS. Otherwise, if Limit1 >= 0
fails, then Picat backtracks to select an alternative action.

The idea of resource-bounded search is to utilize tabled states and their resource
limits to effectively decide when a state should be expanded and when a state should
fail. Let SR denote a state with an associated resource limit, R, as depicted in Figure
6.2. If R is negative, then SR immediately fails. If R is non-negative and S has never

1 This requires the implementation to treat the Limit argument of the predicate differently from
other nt arguments.
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Fig. 6.2 Resource-bounded search

been encountered before, then S is expanded by using a selected action. Otherwise,
if the same state S has failed before and R′ was the resource limit when it failed,
then SR is only expanded if R > R′, i.e., if the current resource limit is larger than
the resource limit was at the time of failure.

6.4 The Deadfish Problem

As described at the beginning of this chapter, the Deadfish problem is to find a
shortest sequence of Deadfish instructions that produces a given non-negative num-
ber. Figure 6.3 gives a program for the problem.

import planner.

main =>
print("Type a non-negative integer:"),
N = read_int(),
best_plan((0,N),Plan),
printf("%s\n", Plan ++ [o]),
println(num_of_insts=len(Plan)+1).

final((N, N)) => true.

action((A,N),NextS,Action,Cost) =>
NextS = (NextA,N), Cost = 1,
instruction(A,N,NextA,Action).

instruction(A,N,NextA,Action), A < N ?=>
Action = i, NextA = A+1.

instruction(A,N,NextA,Action), A !== 0 ?=>
Action = d, NextA = A-1.

instruction(A,N,NextA,Action), A > 1, A < N =>
Action = s, NextA = A*A.

Fig. 6.3 A program for the Deadfish problem
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A state is represented as a pair, (A,N), where A is the current value of the
accumulator, and N is the target number. The initial state is (0,N), where 0 is the
initial value of the accumulator, and N is an input target value. The call best plan
finds an optimal plan by using iterative deepening. Since the target number N can be
reached from 0 with at most N instructions, the following call, which uses branch-
and-bound, can be used instead:

best_plan((0,N),N,Plan).

The final predicate is defined as follows:

final((N, N)) => true.

A state is final if the accumulator has the same value as the target.
The instruction predicate defines the three instructions: i (increment), d

(decrement), and s (square). The action predicate calls instruction to apply
one of the instructions to the current value, A, to produce a new value, NextA.

This program does not use any heuristic to estimate the number of instructions
that are needed to produce the target value from the current value. The action
predicate can be defined to incorporate a heuristic function as follows:

action((A,N),NextS,Action,Cost) =>
NextS = (NextA,N),
Cost = 1,
instruction(A,NextA,Action),
current_resource() > estimate_cost(NextA,N).

where estimate cost(NextA,N) returns an estimate for the number of in-
structions that are needed to produce N from NextA. See Exercise 1 for more de-
tails.

6.5 The 15-Puzzle

The 15-puzzle consists of a 4×4 board and fifteen tiles numbered from 1 to 15. In
a configuration, each tile occupies a square on the board, and one square is empty.
The goal of the puzzle is to arrange the tiles from their initial configuration to a goal
configuration by making vertical or horizontal sliding moves that use the empty
square. Figure 6.4 shows an instance.

Fig. 6.4 15-Puzzle
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import planner.

final(State) => State=[(1,1),(1,2),(1,3),(1,4),
(2,1),(2,2),(2,3),(2,4),
(3,1),(3,2),(3,3),(3,4),
(4,1),(4,2),(4,3),(4,4)].

action([P0@(R0,C0)|Tiles],NextS,Action,Cost) =>
Cost = 1,
(R1 = R0-1, R1 >= 1, C1 = C0, Action = up;
R1 = R0+1, R1 =< 4, C1 = C0, Action = down;
R1 = R0, C1 = C0-1, C1 >= 1, Action = left;
R1 = R0, C1 = C0+1, C1 =< 4, Action = right),

P1 = (R1,C1),
slide(P0,P1,Tiles,NTiles),
current_resource() > manhattan_dist(NTiles),
NextS = [P1|NTiles].

% slide the tile at P1 to the empty square at P0
slide(P0,P1,[P1|Tiles],NTiles) =>

NTiles = [P0|Tiles].
slide(P0,P1,[Tile|Tiles],NTiles) =>

NTiles=[Tile|NTilesR],
slide(P0,P1,Tiles,NTilesR).

manhattan_dist(Tiles) = Dist =>
final([_|FTiles]),
Dist = sum([abs(R-FR)+abs(C-FC) :

{(R,C),(FR,FC)} in zip(Tiles,FTiles)]).

Fig. 6.5 A program for the 15-puzzle

Figure 6.5 gives a program for the problem. A state is represented as a list of six-
teen locations, each of which takes the form (Ri,Ci), where Ri is a row number and
Ci is a column number. The first element in the list gives the position of the empty
square, and the remaining elements in the list give the positions of the numbered
tiles from 1 to 15.

The instance shown in Figure 6.4 can be solved by the following predicate:

main =>
InitS = [(1,2),(2,2),(4,4),(1,3),

(1,1),(3,2),(1,4),(2,4),
(4,2),(3,1),(3,3),(2,3),
(2,1),(4,1),(4,3),(3,4)],

best_plan(InitS,Plan),
foreach (Action in Plan)

println(Action)
end.
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In the initial state, the empty square is located at (1,2), tile #1 is located at (2,2),
tile #2 is located at (4,4), and so on.

The final/1 predicate represents the configuration in which the empty square
is located at (1,1), the upper-left corner of the board, and the numbered tiles are
ordered from left to right and from top to bottom, as shown in Figure 6.4.

The action/4 predicate is defined by one rule, which chooses one of four
possible directions to move the empty square: up, down, left, and right. Let P0
be the current position of the empty square. After it is moved, its position is changed
to P1. The slide predicate changes the current list of tile positions, Tiles, into
NTiles by moving the tile that is currently at P1 to P0.

The test current resource() > manhattan dist(NTiles) ensures
that the current resource limit is greater than the Manhattan distance from the tiles’
current configuration to the tiles’ final configuration. Note that the relation is >, and
not ≥, because the current action costs 1, which has not yet been counted into the
total cost.

Recall that the function zip(L1,L2) returns an association list of array pairs.
For each tile, let (R,C) be the tile’s current position, and let (FR,FC) be the
tile’s final position. The manhattan dist(Tiles) function adds the distance
abs(R-FR)+abs(C-FC) into the total cost.

The 15-puzzle program for the instance shown in Figure 6.6, using Picat version
1.3, finds an optimal plan of 33 steps in 1.2 s on an Intel-i5 PC.

6.6 Blocks World

Fig. 6.6 Blocks World

Blocks World is one of the most famous AI planning problems. As illustrated in
Figure 6.6, there are a given number of cubical blocks, a table that is large enough to
hold all of the blocks, and a robot. Each block either sits on another block or sits on
the table. A block is clear if there is no block sitting on it. The robot can pile a clear
block onto another block or move it onto the table. Given an initial configuration
and a goal configuration of blocks, the problem is to find a plan for the robot to
transform the initial configuration to the goal configuration.

Figure 6.7 gives a program for the problem. A state is represented as a pair of
configurations, (Piles,GPiles), where Piles represents the current configu-
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import planner.

final((Piles,Piles)) => true.

% move a block from a pile to another pile
action((Piles,GPiles),NextS,Action,Cost),

Cost = 1,
NextS = (NPiles,GPiles),
select(FromPile,Piles,Piles1),
not stable(FromPile,GPiles),
FromPile = [Block|FromPileR],
select(ToPile,Piles1,PilesR),
stable([Block|ToPile],GPiles)

=>
NPiles1 = PilesR.insert_ordered([Block|ToPile]),
if FromPileR == [] then

NPiles = NPiles1
else

NPiles = NPiles1.insert_ordered(FromPileR)
end,
Action = $move(Block,ToPile).

% move a block from a pile to the table
action((Piles,GPiles),NextS,Action,Cost) =>

Cost = 1,
NextS = (NPiles,GPiles),
select(FromPile,Piles,PilesR),
not stable(FromPile,GPiles),
FromPile = [Block|FromPileR],
FromPileR !== [],
NPiles1 = PilesR.insert_ordered([Block]),
NPiles = NPiles1.insert_ordered(FromPileR),
Action = $move(Block,table).

stable(Pile,GPiles),
member(GPile,GPiles),
append(_,Pile,GPile)

=>
true.

Fig. 6.7 A program for Blocks World

ration of the piles, and GPiles is the configuration of the piles in the goal state.
A configuration of piles is represented as a sorted list of piles, where each pile is
a list of blocks in which the first element represents the block that is on the top of
the pile. The goal configuration is carried as part of each state in order to facilitate
testing against the final state and the utilization of domain knowledge.

The instance in Figure 6.6 can be solved by the following predicate:

main =>
Init = [[a],[c,b]],
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Goal = [[a,b,c]],
best_plan_upward((Init,Goal),Plan),
foreach (Step in Plan)

println(Step)
end.

The initial configuration consists of two piles, [a] and [c,b]. The goal configu-
ration consists of a single pile, [a,b,c]. Note that, in both the initial configuration
and the final configuration, the list of piles must be sorted. For example, if the initial
state were given as Init = [[c,b],[a]], then the program would not work.
The program uses the branch-and-bound search predicate best plan upward,
which works better than iterative-deepening for this problem. Since both action
rules are deterministic, the program only returns one plan, which is guaranteed to
be optimal. For this reason, best plan upward can be replaced by plan.

The final/1 predicate is defined as follows:

final((Piles,Piles)) => true.

A state is final if the current configuration is the same as the goal configuration.
The action/4 predicate is defined by two rules. The first rule moves a clear

block from a pile to another pile. The call select(FromPile,Piles,Piles1)
selects an origin pile, FromPile, from Piles, returning the remaining list of piles
as Piles1. The call select(ToPile,Piles1,PilesR) selects a destina-
tion pile, ToPile, from Piles1, returning the remaining list of piles as PilesR.
This rule moves the Block from the top of FromPile to the top of ToPile.
This rule not only represents the pre-conditions and effects of the move action, but
also incorporates the following domain knowledge: a pile cannot be destroyed if it
is already stable in the goal configuration, and a block cannot be stacked onto a pile
unless the resulting pile is stable in the goal configuration. The second action rule
moves a clear block from a pile onto the table. The stable predicate tests if a pile
is stable. A pile is stable if it is the suffix of a pile in the goal configuration.

The Blocks World program is very efficient, since both action rules are de-
terministic. This program becomes more difficult if the number of piles that can be
held by the table is limited. For more details, see Exercise 4.

6.7 Logistics Planning

Many military and business operations require logistics planning, which includes
the ability to efficiently transport people and supplies. This section considers the
Transport domain taken from the International Planning Competition 2014 (IPC
’14). There is a weighted directed graph, a set of trucks, each of which has a ca-
pacity that indicates the maximum number of packages that the truck can carry, and
a set of packages, each of which has an initial location and a destination. There
are three types of actions: load a package onto a truck, unload a package from a
truck, and move a truck from one location to a different location. Each action has an



118 6 Planning with Resource-Bounded Search

associated cost. The objective of the problem is to find an optimal, minimum-cost
plan to transport the packages from their initial locations to their destinations. The
weighted directed graph is given by the predicate road(From,To,Cost), which
succeeds if there is an edge from node From to node To that has a cost of Cost. An
optimal plan for this problem normally requires trucks to cooperate. This problem
degenerates into the shortest path problem if there is only one truck and only one
package.

Figure 6.8 gives a program for the problem. A state is represented as an array of
the form {Trucks,Packages}, where Trucks is an ordered list of trucks, and
Packages is an ordered list of waiting packages. A package in Packages is a
pair of the form (Loc,Dest), where Loc is the source location of the package,
and Dest is the destination of the package. A truck in Trucks is a list of the form
[Loc,Dests,Cap], where Loc is the current location of the truck, Dests is an
ordered list of destinations of the packages that are loaded onto the truck, and Cap
is the capacity of the truck. Only the destination of a loaded package is included
in the package’s representation; once a package is loaded, its origin is irrelevant for
planning, and its location is the same as the truck’s location. At all times, the number
of loaded packages must not exceed the truck’s capacity.

Note that keeping the capacity as the last element of the list facilitates sharing,
since the suffix [Cap], which is common to all the trucks that have the same ca-
pacity, is only tabled once. Also note that the names of the trucks and the names
of the packages are not included in the representation. The representation breaks
symmetries as follows: If two packages have the same destination, then they are in-
distinguishible if: (i) they are both in the waiting list, and both have the same source,
or (ii) they are both on the same truck. Furthermore, two configurations are treated
as the same state if they only differ by a truck’s name or a package’s name.

The following predicate solves an instance:

main =>
Facts =

$[road(c3,c1,40),road(c1,c3,40),road(c3,c2,18),
road(c2,c3,18),road(c4,c1,36),road(c1,c4,36),
road(c4,c3,37),road(c3,c4,37),road(c5,c2,24),
road(c2,c5,24),road(c5,c3,26),road(c3,c5,26)],

cl_facts(Facts,[$road(+,-,-)]),
Trucks = [[c1,[],2],[c2,[],3]],
Packages = [(c1,c2),(c1,c2),(c2,c5),(c3,c1)],
best_plan({Trucks,Packages},Plan),
foreach (Action in Plan)

println(Action)
end.

Note that both Trucks and Packages must be sorted.
The final/1 predicate is defined as follows:

final({Trucks,[]}) =>
foreach([_Loc,Dests|_] in Trucks)

Dests == []
end.
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A state is final if all of the trucks are empty, and if there are no waiting packages.
The action/4 predicate is defined by three rules, each defining an action type.

For the load action, the rule nondeterministically selects a truck that still has room
for another package, and nondeterministically selects a package that has the same
location as the truck. After loading the package onto the truck, the rule inserts the
package’s destination into the list of the truck’s loaded packages, if the truck’s loca-
tion is not the same as the package’s destination. Note that the rule is nondetermin-
istic. Even if a truck passes by a location that has a waiting package, the truck may
not take the package. If this rule is made deterministic, then the optimality of plans
is no longer guaranteed, unless there is only one truck, whose capacity is infinite.

The program can be improved by incorporating some domain control knowledge.
The following rule can be inserted into the beginning of action/4 to reduce non-
determinism:

action({Trucks,Packages},NextS,Action,ACost),
select([Loc,Dests,Cap],Trucks,TrucksR),
select(Loc,Dests,DestsR)

=>
Action = $unload(Loc),
ACost = 1,
NewTrucks = insert_ordered(TrucksR,[Loc,DestsR,Cap]),
NextS = {NewTrucks,Packages}.

This rule deterministically unloads a package if the package’s destination is the
same as the truck’s location.

After each new state is generated, the following condition is checked to ensure
that the current path is viable:

current_resource() - ACost >= estimate_cost(NextS).

Let P1, . . ., Pn be the remaining packages, and let Ci be the minimum cost of moving
package Pi to its destination. The moving cost of a state can safely be estimated as
max({C1, . . . ,Cn}). The estimated total cost is the estimated moving cost plus the
loading and unloading costs of all of the remaining packages. This heuristic is a
lower bound of the real cost, and is therefore admissible. The cost of a minimum
Steiner tree that connects the locations of the packages to their destinations is a more
accurate estimate of the moving cost. For more details, see Exercise 5.

6.8 Bibliographical Note

The iterative-deepening A* algorithm, IDA*, was first proposed by Richard E. Korf
in [32]. The IDA* algorithm and many other algorithms that are used by plan-
ning systems can be found in [34, 46]. The resource-bounded tabled search was
detailed in [70]. Unlike IDA*, which starts a new search round from scratch, the
best plan search predicate reuses the states that were tabled in the previous
rounds.

In the past, a lot of work was done on the use of domain knowledge in plan-
ning [2, 21, 23, 31], but recently this part of modeling has been put aside, because
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of the advancement of domain-independent PDDL planners. It has been shown that
with structural state representations that facilitate term sharing and symmetry break-
ing, and with domain-dependent control knowledge and heuristics, Picat models
can be significantly faster than PDDL models that are solved by the best domain-
independent planners [4, 70].

6.9 Exercises

1. The Deadfish program shown in Figure 6.3 does not use any heuristic. Let N be
the target value, and let A be the accumulator’s value. A heuristic function can
compute the number of increment or decrement instructions that are needed to
produce N or

√
N from A if

√
N < A < N. Write such a heuristic function, and

use it to make the Deadfish program faster.
2. The Sokoban problem from Section 5.6 was solved by using depth-unbounded

search. This problem can also be solved by using the depth-bounded search predi-
cate best plan. Analyze the reason why depth-unbounded search is faster than
depth-bounded search for the Sokoban problem. What heuristics can be utilized
to make depth-bounded search more effective than depth-unbounded search for
Sokoban?

3. The Manhattan-distance heuristic used in the 15-puzzle program in Section 6.5
computes the shortest distance of each tile from its current position to its fi-
nal position and sums all the distances. This heuristic function is admissible but
not accurate. Improve the 15-puzzle program by using a more effective heuristic
function.

4. The program for Blocks World that is shown in Figure 6.7 assumes that the table
is big enough to hold any number of piles. Assume that the table is only big
enough to hold three piles. Then, a block may have to be moved onto a pile even
if the resulting pile is not stable. Rewrite the program to meet this new constraint.

5. The heuristic function that is used in the Transport program in Figure 6.8 com-
putes the maximum of the shortest distances of the packages from their current
positions to their destinations. A more effective heuristic function can use the
cost of a minimum Steiner tree as an estimate. Write a heuristic function to com-
pute the cost of such a minimum Steiner tree, and investigate if it can improve
the speed of the program.

6. Write a program to solve the Tower of Hanoi problem.2 There are three pegs,
and N disks of differing sizes that are stacked in increasing size order on the
leftmost peg, with the smallest disk on top. N is input by the user. The goal is to
find the shortest-length plan to stack the N disks on the rightmost peg, using the
following rules:

a. Only one disk can be moved at a time.
b. Only the top disk on any peg can be moved.

2 For a dynamic programming model of the problem, see Section 4.8.
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c. Larger disks cannot be stacked above smaller disks.

7. Modify the Tower of Hanoi program from Exercise 6 so that it can accept an
arbitrary number of pegs, K, as input, and generate the shortest-length plan to
stack the N disks on the rightmost peg.
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import planner.

final({Trucks,[]}) =>
foreach([_Loc,Dests|_] in Trucks)

Dests == []
end.

action({Trucks,Packages},NextState,Action,ActionCost) ?=>
Action = $unload(Loc),
ActionCost = 1,
select([Loc,Dests,Cap],Trucks,TrucksR),
select(Dest,Dests,DestsR),
NewTrucks = insert_ordered(TrucksR,[Loc,DestsR,Cap]),
(Loc == Dest ->

NewPackages = Packages;
NewPackages = insert_ordered(Packages,(Loc,Dest))),

NextState = {NewTrucks,NewPackages}.
action({Trucks,Packages},NextState,Action,ActionCost) ?=>

Action = $load(Loc),
ActionCost = 1,
select([Loc,Dests,Cap],Trucks,TrucksR),
length(Dests) < Cap,
select((Loc,Dest),Packages,PackagesR),
NewDests = insert_ordered(Dests,Dest),
NewTrucks = insert_ordered(TrucksR,[Loc,NewDests,Cap]),
NextState = {NewTrucks,PackagesR}.

action({Trucks,Packages},NextState,Action,ActionCost) =>
Action = $move(Loc,NextLoc),
select([Loc|Tail],Trucks,TrucksR),
road(Loc,NextLoc,ActionCost),
NewTrucks = insert_ordered(TrucksR,[NextLoc|Tail]),
NextState = {NewTrucks,Packages},
estimate_cost(NextState) =< current_resource()-ActionCost.

table
estimate_cost({Trucks,Packages}) = Cost =>

LoadedPackages = [(Loc,Dest) :
[Loc,Dests,_] in Trucks, Dest in Dests],

NumLoadedPackages = length(LoadedPackages),
TruckLocs = [Loc : [Loc|_] in Trucks],
travel_cost(TruckLocs,LoadedPackages,Packages,0,TCost),
Cost = TCost+NumLoadedPackages+length(Packages)*2.

% the maximum of the minimum costs
travel_cost(_Trucks,[],[],Cost0,Cost) => Cost=Cost0.
travel_cost(Trucks,[(PLoc,PDest)|Packages],Packages2,Cost0,Cost) =>

Cost1 = min([D1+D2 : TLoc in Trucks,
shortest_dist(TLoc,PLoc,D1),
shortest_dist(PLoc,PDest,D2)]),

travel_cost(Trucks,Packages,Packages2,max(Cost0,Cost1),Cost).
travel_cost(Trucks,[],Packages2,Cost0,Cost) =>

travel_cost(Trucks,Packages2,[],Cost0,Cost).

table (+,+,min)
shortest_dist(X,X,Dist) => Dist=0.
shortest_dist(X,Y,Dist) =>

road(X,Z,DistXZ),
shortest_dist(Z,Y,DistZY),
Dist = DistXZ+DistZY.

Fig. 6.8 A program for the Transport domain



Chapter 7
Encodings for the Traveling Salesman Problem

Abstract So far, this book has presented several techniques for modeling con-
straint satisfaction, dynamic programming, and planning problems. This chapter
presents encodings for the Traveling Salesman Problem, comparing models for sev-
eral solvers, including CP, SAT, MIP, and tabled planning.

7.1 Introduction

The Traveling Salesman Problem (TSP) is one of the most well-known combinato-
rial problems. Given a set of cities, the objective is to find a tour of all of the cities
such that the total traveling cost is minimized. This problem has many applications,
such as creating optimal computer boards, logistics, and telecommunications.

TSP is a graph problem. For a given graph, which can be directed or undirected,
the goal of TSP is to find a Hamiltonian cycle that connects all of the vertices of the
graph such that the total travel cost is minimized. This chapter presents encodings
for the Traveling Salesman Problem for several solvers, including CP, SAT, MIP,
and tabled planning.

Fig. 7.1 A sample graph

123
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7.2 An Encoding for CP

A well-known representation of a graph in CP is to use a domain variable for each
vertex in the graph, where the domain is a set of neighboring vertices. For example,
the graph shown in Figure 7.1 can be represented by using six domain variables: V1
for vertex 1, V2 for vertex 2, and so on. Vertex 1 is directly connected to vertices 2,
3, and 4, so the domain of V1 is [2,3,4]. Domain variables are not sufficient for
representing weighted graphs; they need to be supplemented with a data structure
for representing weights, such as a cost matrix in which the entry at (i, j) stores the
weight of the edge between Vi and Vj.

The following shows a CP encoding for TSP:

import cp.

main =>
M = {{0,6,1,5,0,0}, % cost matrix

{6,0,5,0,3,0},
{1,5,0,5,6,4},
{5,0,5,0,0,2},
{0,3,6,0,0,6},
{0,0,4,2,6,0}},

tsp(M).

tsp(M) =>
N = length(M),
NextArr = new_array(N), % visit NextArr[I] after I
NextArr :: 1..N,
CostArr = new_array(N),
circuit(NextArr),
foreach (I in 1..N)

CostArr[I] #> 0,
element(NextArr[I],M[I],CostArr[I])

end,
TotalCost #= sum(CostArr),
solve($[min(TotalCost), report(println(cost=TotalCost))],

NextArr),
foreach (I in 1..N)

printf("%w -> %w\n",I,NextArr[I])
end.

The tsp/1 predicate takes the cost matrix of a graph and searches for an optimal
route over the graph. The function length(M) returns the size of M, which is the
same as the number of vertices in the graph. The NextArr array serves as a holder
for a route to be found. For each vertex I, the successor vertex of I in the route is
NextArr[I]. The call NextArr :: 1..N narrows the domain of each of the
variables in NextArr to the range 1..N. After this call, the variables in NextArr
become domain variables, which can only take values from the domain.

The call CostArr = new array(N) binds CostArr to another N-element
array. This array represents the costs of the edges in the route. This call is followed



7.2 An Encoding for CP 125

by a call to the global constraint circuit,1 which is made precisely for the pur-
pose of connecting each vertex with the next vertex to visit, with the additional
constraint that all vertices must be visited exactly once. The circuit constraint
enforces that it is a tour, meaning that after the last vertex is visited, the first vertex
must be visited.

For each vertex I, let J be the successor of I in the route, i.e.,

J = NextArr[I].

Then CostArr[I] is the same as M[I,J], the cost of the edge I→J. Since
array indices must be integers in Picat, it is impossible to write the constraint as
CostArr[I] = M[I,J], because J is a variable. For this reason, the element2

constraint is used to force CostArr[I] to be equal to the travel cost of the edge
I→J.

The call solve(. . .,NextArr) starts the search by the CP solver. The first
argument specifies a list of options to be passed to the solver. The dollar sign
$ informs the compiler that the elements in the list are terms, not function calls.
The option min(TotalCost) specifies an objective value to be minimized. The
option report prints out the current total cost each time a better route is found
while searching for an optimal answer. Note that, since the variables in CostArr
are functionally dependent on the variables in NextArr, it is unnecessary to pass
CostArr to solve.

The call solve uses the default strategy for labeling variables with values, i.e.,
choosing variables from left to right, and selecting values from the minimum to
the maximum. For the objective value min(TotalCost), the CP solver employs
branch-and-bound to find a solution that has the minimal value for TotalCost.
The solver first searches for an assignment for NextArr, which gives a value C
for TotalCost. Then, the solver restarts the search from scratch, imposing the
constraint TotalCost #< C. These two steps are repeated until no solution can
be found. At the end, the solver returns the last solution that was found.

A Better Labeling Strategy

For TSP, the default value-selecting strategy that selects values from the minimum
to the maximum is not meaningful, since the vertices’ numbers do not reflect the
graph structure. One value-selecting strategy that is often used in greedy algorithms
for TSP is to visit the neighbors by starting from the nearest and ending with the
farthest. This strategy has the promise to start with a short tour that leads to more ef-
fective pruning during branch-and-bound search. The following shows an improved
program that orders neighbors by distance, and selects the nearest neighbor first:

tsp(M) =>
N = length(M),
NextArr = new_array(N), % visit NextArr[I] after I

1 http://sofdem.github.io/gccat/gccat/Ccircuit.html
2 http://sofdem.github.io/gccat/gccat/Celement.html
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NextArr :: 1..N,
CostArr = new_array(N),
circuit(NextArr),
foreach (I in 1..N)

CostArr[I] #> 0,
element(NextArr[I],M[I],CostArr[I])

end,
TotalCost #= sum(CostArr),
foreach (I in 1..N)

Pairs = [(M[I,J],J) : J in 1..N, M[I,J] > 0].sort(),
Neibs = [J : (_,J) in Pairs],
NextArr[I].put_attr(domain,Neibs)

end,
solve($[min(TotalCost), label(mylabel)], NextArr),
foreach (I in 1..N)

printf("%w -> %w\n",I,NextArr[I])
end.

mylabel(V),var(V) =>
Domain = V.get_attr(domain),
member(V,Domain).

mylabel(_V) => true.

Before solve, a foreach is inserted to order the neighbors of each vertex.
For each vertex I, the loop computes a sorted list of neighbors Neibs, and at-
taches Neibs to variable NextArr[I] as an attribute with the name domain.3

The list comprehension [(M[I,J],J) : J in 1..N, M[I,J] > 0] re-
turns a list of pairs of the form (M[I,J],J), where J is a neighbor of I, and
M[I,J] is the cost that is associated with the edge I→J. The list comprehen-
sion [J : ( ,J) in Pairs] extracts the neighbors from Pairs. The call
NextArr[I].put attr(domain,Neibs) attaches Neibs as an attribute
with the name domain to variable NextArr[I].

The option label(mylabel)4 informs the CP solver that once a variable V is
selected, the user-defined call mylabel(V) is used to label V. If V is a variable,
then V.get attr(domain) retrieves the attribute value of domain attached
to V, and the call member(V,Domain) nondeterministically assigns a value of
Domain to V. Since the list Domain is sorted by distance, the neighboring vertices
in the list are visited from the nearest to the farthest during search.

7.3 An Encoding for SAT

Since Picat provides a common interface to CP, SAT, and MIP solvers,5 the above
encodings can be made to work with SAT by changing import cp to import

3 A variable is called an attributed variable if one or more attributes are attached to it. A domain
variable is a special kind of an attributed variable.
4 The option label is supported in Picat version 1.4 and later.
5 In Picat version 1.3, the mip module only supports linear constraints.
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sat. Nevertheless, a model that works best for CP is not necessarily the best model
for SAT.

In general, 0/1 integer programming models work better for the SAT solver than
the CP solver. In the above CP models, a variable is used for each vertex, and the
value for the variable indicates the next vertex to be visited. This model requires
N variables. A 0/1 integer programming model uses an N×N matrix of Boolean
variables: the entry at [I,J] is 1 iff vertex J is visited immediately after vertex I.
The following Picat program encodes this model:

import sat.

tsp(M) =>
N = length(M),
NextArr = new_array(N,N),
NextArr :: 0..1,
foreach (I in 1..N, J in 1..N)

if M[I,J] == 0 then NextArr[I,J] = 0 end
end,
% each vertex is followed by exactly one vertex in a tour
foreach (I in 1..N)

sum([NextArr[I,J] : J in 1..N]) #= 1
end,
% each vertex is preceded by exactly one vertex in a tour
foreach (J in 1..N)

sum([NextArr[I,J] : I in 1..N]) #= 1
end,
% no sub-tours
Order = new_array(N),
Order :: 1..N,
Order[1] = 1, % visit vertex 1 first
foreach (I in 1..N)

NextArr[I,1] #=> Order[I] #= N,
foreach (J in 2..N)

NextArr[I,J] #=> Order[J] #= Order[I]+1
end

end,
CostArr = new_array(N),
foreach (I in 1..N)

CostArr[I] :: min([M[I,J] : J in 1..N, M[I,J] !== 0]) ..
max([M[I,J] : J in 1..N, M[I,J] !== 0]),

foreach (J in 1..N)
NextArr[I,J] #=> CostArr[I] #= M[I,J]

end
end,
TotalCost #= sum([CostArr[I] : I in 1..N]),
solve($[min(TotalCost),report(println(cost=TotalCost))],

NextArr),
foreach (I in 1..N, J in 1..N)

if NextArr[I,J]==1 then printf("%w -> %w\n",I,J) end
end.

NextArr is an N×N two-dimensional Boolean array. For two vertices I and J,
a tour includes the edge I→J iff NextArr[I,J] is 1. The first foreach loop
ensures that the edge I→J is not in a tour if vertex J is not directly reachable
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from vertex I or if J == I. The second foreach loop ensures that each vertex is
followed by exactly one vertex in a tour. The third foreach loop ensures that each
vertex is preceded by exactly one vertex in a tour.

In order to prevent sub-tours in solutions, this model assigns a unique ordering
number from 1..N to each vertex. For each vertex I, OrderArr[I] indicates the
ordering number assigned to vertex I. Without loss of generality, 1 is assigned to
vertex 1, meaning that vertex 1 is visited first. For each vertex I, if vertex 1 is visited
after vertex I, then OrderArr[I] equals N. Otherwise, for each J in 2..N, if
NextArr[I,J] == 1, then OrderArr[J] #= OrderArr[I]+1.

As in the CP encoding, each vertex is assigned a cost. For each vertex I, let J be
the successor of I in the route, i.e., NextArr[I,J] is 1. Then CostArr[I] is
the same as M[I,J], the cost of the edge I→J.

When the sat module is used, constraints are compiled into a logic formula in
the conjunctive normal form (CNF) for the underlying SAT solver. Picat employs
the so called log-encoding for compiling domain variables and constraints. For a
non-Boolean domain variable, dlog2(n)e Boolean variables are used, where n is
the maximum absolute value of the domain. If the domain contains both negative
and positive values, then another Boolean variable is used to encode the sign. Each
combination of values of these Boolean variables represents a valuation for the do-
main variable. If there are holes in the domain, then disequality (#!=) constraints
are generated in order to disallow assignments of those hole values to the variable.
Compared with other encodings such as sparse encoding and order encoding, log-
encoding is especially suited to arithmetic constraints, because of the compactness
of the generated code.

7.4 An Encoding for MIP

The above models contain non-linear constraints. In order to make these models
work with the MIP solver, the compiler must linearize the non-linear constraints
before sending them to the underlying MIP solver. The following Picat program
encodes a linear integer programming model for the MIP solver:

import mip.

tsp(M) =>
N = length(M),
NextArr = new_array(N,N),
NextArr :: 0..1,
foreach (I in 1..N, J in 1..N)

if M[I,J] == 0 then NextArr[I,J] = 0 end
end,
% each vertex is followed by exactly one vertex in a tour
foreach (I in 1..N)

sum([NextArr[I,J] : J in 1..N]) #= 1
end,
% each vertex is preceded by exactly one vertex in a tour
foreach (J in 1..N)
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sum([NextArr[I,J] : I in 1..N]) #= 1
end,
% no sub-tours
OrderArr = new_array(N),
OrderArr :: 1..N,
OrderArr[1] = 1, % visit vertex 1 first
% linear ordering constraints
foreach (I in 2..N, J in 2..N, I !== J)

OrderArr[I] - OrderArr[J] + NextArr[I,J]*N #=< N-1
end,
TotalCost #= sum([NextArr[I,J]*M[I,J] :

I in 1..N, J in 1..N, I !== J]),
solve($[min(TotalCost)], NextArr),
foreach (I in 1..N, J in 1..N)

if NextArr[I,J]==1 then printf("%w -> %w\n",I,J) end
end,
println(cost=TotalCost).

This model is the same as the one for SAT, except that N2 linear constraints are used
to constrain the ordering variables in OrderArr. For each pair of vertices [I,J],
where I !== J, the constraint

OrderArr[I] - OrderArr[J] + NextArr[I,J]*N #=< N-1

holds if NextArr[I,J] = 0. If NextArr[I,J] = 1, the constraint still
holds if the ordering number that is assigned to vertex J is greater than that assigned
to vertex I. It has been proven that these linear constraints guarantee the soundness
and completeness of the model: every solution that satisfies the constraints is guar-
anteed not to contain any sub-tours; for every feasible tour, there is an assignment
for the ordering variables that satisfies the constraints.

7.5 An Encoding for the Tabled Planner

This section formulates TSP as a planning problem for Picat’s planner. For a plan-
ning problem, users only need to define the predicates final/1 and action/4,
and call one of the search predicates in the module on an initial state in order to find
a plan or an optimal plan.

For TSP, a state can be represented by a tuple of the form:

{CurrV,Unvisited}

where CurrV is the vertex that is being visited, and Unvisited is a sorted list of
vertices that have not yet been visited. The initial state is {1,2..N}, where 1 is the
current vertex that is being visited, and 2..N is a list of vertices to be visited.

The following encodes a planner model for TSP:

import planner.

tsp(M) =>
N = length(M),
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Rel = [],
foreach (I in 1..N)

Neibs = [(J,M[I,J]) : J in 1..N, M[I,J] > 0].sort(2),
Rel := [$neibs(I,Neibs)|Rel]

end,
cl_facts(Rel,[$neibs(+,-)]),
best_plan_bb({1,2..N},Plan,Cost),
println(Plan),
println(plan_cost = Cost).

final({1,[]}) => true.

action({V,[]}, NState, Action, ActionCost) =>
NState = {1,[]},
Action = 1, % go back to vertex 1
neibs(V,Neibs),
member((1,ActionCost),Neibs).

action({V,Unvisited}, NState, Action, ActionCost) =>
NState = {NextV,NUnvisited},
Action = NextV, % visit NextV
neibs(V,Neibs),
member((NextV,ActionCost),Neibs),
once select(NextV,Unvisited,NUnvisited).

The predicate tsp(M) first converts the given cost matrix into an adjacency re-
lation. In the beginning, the relation Rel is empty. For each vertex I, the assign-
ment Rel := [$neibs(I,Neibs)|Rel] adds the fact neibs(I,Neibs)
into the relation, where Neibs is a sorted list of neighbor-distance pairs. Note that
the list Neibs is sorted by the key index 2, i.e., the distance from vertex I to the
neighbor. After the foreach loop, cl facts(Rel,[$neibs(+,-)]) com-
piles and loads the relation into the code area, assuming that the relation is indexed
on the first argument.

The call best plan bb starts branch-and-bound search for a plan, starting with
the initial state {1, 2..N}. In addition to branch-and-bound search, Picat also
provides predicates for performing depth-unbounded search and iterative-deepening
search.

The predicate final/1 is defined by one rule. A state is final if it is {1,[]},
which means that the vertex that is being visited is 1, and the list of vertices remain-
ing to be visited is empty.

The predicate action/4 is defined by two rules. The first rule states that if
there are no remaining vertices to be visited, then the salesman must return to the
starting vertex, i.e., vertex 1. The second rule handles the case in which the list of
unvisited vertices is not empty. It selects a neighboring vertex, NextV, of CurrV,
and removes NextV from Unvisited, resulting in a new list of unvisited vertices,
UnvisitedR.
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Table 7.1 A comparison of TSP encodings on the costs of solutions

Benchmark CP SAT MIP planner
70 300 0 380 443 765 n/a
70 300 11 471 509 708 n/a
70 300 12 403 433 645 n/a
70 300 14 407 499 n/a n/a
70 300 3 482 518 739 n/a
70 300 4 487 532 n/a n/a
70 300 5 424 503 672 417
70 300 7 465 501 658 n/a
70 300 8 453 497 738 n/a
70 300 9 420 472 619 n/a
80 340 0 507 572 n/a n/a
80 340 10 535 521 847 n/a
80 340 11 541 656 n/a n/a
80 340 13 476 530 n/a n/a
80 340 15 516 516 n/a n/a
80 340 16 580 714 n/a n/a
80 340 17 502 607 n/a n/a
80 340 18 469 576 n/a n/a
80 340 4 539 575 n/a n/a

7.6 Experimental Results

Table 7.1 gives the costs of the solutions that are obtained by the four encodings for
a set of randomly-generated TSP instances. For each instance name n m k, n is the
number of vertices in the graph, m is the number of edges, and k is an instance num-
ber. Branch-and-bound is used in all of the solvers for finding optimal solutions. For
MIP, a user-defined branch-and-bound is used so that the solver reports whenever
a better solution is found. The solutions were obtained on a PC notebook with 2.4
GHz Intel i5 and 8 GB RAM, and the time limit was set to 10 min. None of the
solvers succeeded in proving the optimality of any of the solutions.

CP is a clear winner. It found the best-quality solutions for all of the instances,
except for instance 70 300 5. For CP, the labeling strategy that steers search to-
ward low-cost solutions is effective.

SAT found at least one solution for each of the instances. The qualities of the
solutions found by SAT are not as good as those found by CP. TSP is an arithmetic-
intensive benchmark, and SAT is known to be weak at handling arithmetic con-
straints. The log-encoding of domain variables and constraints, which is adopted by
the Picat SAT compiler, is less susceptible to space explosion than other encodings.
Nevertheless, once constraints are compiled into CNF, the SAT solver is totally blind
to the objective function, and cannot steer search toward low-cost solutions.

MIP failed to find any solutions for several of the instances, and for the instances
for which it did find solutions, the qualities are not comparable with those found by
CP or SAT. GLPK, the MIP solver that is linked to Picat, is not considered to be one
of the fastest MIP solvers. The results could have been completely different had a
cutting-edge MIP solver been used.
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The planner encoding performed the worst; it failed to find solutions for any of
of the instances, except for instance 70 300 5. Interestingly, the solution that was
found by the planner for instance 70 300 5 turned out to be the best among the
solutions that were found by any of the solvers. In the planner encoding, a state
stores the current vertex that is being visited, and also a set of unvisited vertices. In
the worst case, all subsets of the vertices need to be explored. Despite the potential
memory blowup, all of the runs were terminated by out-of-time, and not by out-of-
memory.

7.7 Bibliographical Note

TSP is an intensely investigated problem in computer science. Successful algorithms
can find optimal solutions for graphs with over 10000 vertices. For example, see [1]
for a survey of methods for solving TSP. It is also one of the most well-studied prob-
lems in mathematical programming. For example, see [13] for integer programming
models and techniques that are tailored to TSP. The circuit constraint [59] is mo-
tivated by graph problems that require finding Hamiltonian cycles, including TSP.
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13. Vašek Chvátal, William J. Cook, George B. Dantzig, Delbert R. Fulkerson, and Selmer M.
Johnson. Solution of a large-scale traveling-salesman problem. In 50 Years of Integer Pro-
gramming 1958-2008 - From the Early Years to the State-of-the-Art, pages 7–28. Springer,
2010.

14. W. F. Clocksin and C. S. Mellish. Programming in Prolog. Springer, 1994.
15. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction

to Algorithms (3rd Edition). MIT Press, 2009.
16. Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth Zadeck.

Efficiently computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451–490, October 1991.

17. Brian Dean. Dynamic programming practice problems.
http://people.cs.clemson.edu/˜bcdean/dp practice/.

18. Rina Dechter. Constraint Processing. Morgan Kaufmann, 2003.
19. Richard Fikes and Nils J. Nilsson. STRIPS: A new approach to the application of theorem

proving to problem solving. Artificial Intelligence, 2(3-4):189–208, Winter 1971.
20. Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub. Answer Set

Solving in Practice. Morgan and Claypool, 2012.
21. Malik Ghallab, Dana S. Nau, and Paolo Traverso. Automated Planning: Theory and Practice.

Morgan Kaufmann, 2004.
22. Hai-Feng Guo and Gopal Gupta. Simplifying dynamic programming via mode-directed

tabling. Software: Practice and Experience, 38(1):75–94, January 2008.
23. Patrik Haslum and Ulrich Scholz. Domain knowledge in planning: Representation and use.

In Enrico Giunchiglia, Nicola Muscettola, and Dana Nau, editors, Proceedings of the Inter-
national Conference on Automated Planning & Scheduling 2003 Workshop on PDDL, pages
69–78, 2003.



134 7 Encodings for the Traveling Salesman Problem

24. Manuel V. Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-Garcı́a, Edison Mera,
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